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Translators’ Foreword

The group concept has played a central part in
the development of mathematical thought. At the same time, many
aspecte of the theory of groups are simple enongh for the intereste
grarnmar school student to appreciate and absorb. We believe that this
book by the eminent mathematician P. 8. Alexandroff is espe€ially
suited or introducing the subject to the young student. Thegmitetial
presented is of fundamental importance and is developed . olear and
rigorons fashion, and the book i particularly noteworthy on account
of the wealth of illustrative examples which arc mglfided.

We have added some exercises at the end of eagh.bHapter, and some
references which we hope will be useful tosthe English-speaking
student. We have also made a few minor a;kéﬁions and additions to
the actual text, some of which were madengeessary by English usage,
and we have corrected some minor errors;

Throughout the work we were abletd consult Mrs. A. M. IL Marleyn
over language obsoul'itiégyghﬁbfﬁ%ﬂﬁ t& HeF # ieat debt of gratitude
for the valuable and generousshelp which she gave us. 'We are also
very grateful to Dr. L B \Fouikes of the Univemsity College of
Swansea for his critical,\x@;aﬁing of the text at the proof stage.

H. P
o\.J G. M. P.



Jrom the Foreword to the First Edition

Next to the concept of a function, which is a most important
concept pervading the whole of mathematics, the concept of a group
i3 of the greatest significance in the various branches of mathematies
and in its applications. The group concept is not any more difficualt
to appreciate than the function concept; indeed one can morehchsily
become familiar with this concept during the early sthges of a
mathematical education than with the subject-matter gfelementary
mathematics. 7, \

Bvery pupil in a senior class of a grammaz 'Sf"h(;li)l who enjoys
doing mathematics is capable of grasping the ided 6l a group if he is
interested and industrious. And so this bookyhas been written in the
first place for the mathematically inclined ®iripis in the senior classes
in the grammar school, but also for thégewwho teach mathematics to
the senior or to the advanced level, \A%'regards the character of the
Eaxpositi(‘m, [ have beeg af Jﬁigl&‘%qiggrgdufe no concepts without
tllustrating them by wmeans of’:ﬁm’npﬁe exaﬁques, for the most part
geometrical. )

,“\\ F. 8. A,

&
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Chapter T

THE GROUP CONCEPT

N\
§ 1. Introductory examples '
{
1. Operations with whole numbers . s\z

The addition of whole numbers * satisfies the foI]owiﬁé }zonditionb,
which we call axioms of addition and which are of vcrsy great Impor-
tance for all that follows: )

L Two numbers can be added together (1,860 any two arbitrary
rumbers ¢ and & there corresponds a umqgsly determined number,
which we call their sum: a 4 &). - PANY;

/
. M

I1. The Associative Law: AN

For any three m‘bﬁﬁw_ydbi@ﬁb@@ﬂﬁ?@’, Fepinge have the following
identity S\

(aj{b}+c=a+(b+6)
O

IIT. Among the n}‘u@tﬁérs there is a uniquely determined number 0,

the zero, which is stk that for every mumber a the relation
P\% at+0=a

W

45 samsﬁed \‘

IV, \g‘o every number a there corresponds a so-called inverse (or
negaiie) number —a, which has the property that the sum a + {—a) is
eqital to zero:

b 3

a4+ (—a)=0
Finally yet another important condition is satisfled.
V. The Commutative Law:
at+b=5b+4a
* By the whole numbers we understand all positive and all negafive whole numbers

together with the number zero.
1



2 £, The Group Concept

2. The rotations of an equilateral triangle

We show that it is possible to add not only numbers bnt also
many other kinds of things, and that the above conditions rerrain
satisfied.

First Example.—We consider all possible rotations of an eguiluters
triangle ABC about its centroid O (fig. 1), We agree to call two rota-
tions identical if they only differ from one another by 2 whole wmimber
of complete revolutions (and therefore by an integral multipla Of

¢\
C 'S
R4
Q )
D
A (NB
Fig. 1 8 -

360°%). We see without di[@f\:}\}}ﬁ&f%i of all possible rotations of the
triangle only three rotations send it intd coincidence with itself.
namely, the rotations thrdurh 120°, 240°, and the so-called zero
rotation, which leavescallMhe vertices unchanged and hence also all
the sides of the triangﬁ The first rotation gends the vertex A inlo
the vertex B, thesgértex B into the vertex C, the vertex C into the
vertex 4 (we sa,y: £hat it permutss cyclically the vertices A,B,C). The
second Tofation’sends A into €, B into A, U into B, and therelore
permutes.ﬁ\ﬁ;@;B cyclically,

Now},jwe introduce the following natural definition: The addition
of tywgrotations means their successive application, the first rotation
fQ?Qﬁed by the second. If we add the rotation through 120° to itseif,
thén the result is the rotation through 240°; if we add to it the rota-
tion through 240°, then the result is the rotation through 360°, the
zero rotation. Two rotations throngh 240° result in the rotation
through 480° — 360° 4~ 120°; their sum is thercfore the rtotation
through 120° If we denote the zero rotation by a,, the rotation

* Since a rotation throngh an integral multiple of 360° sends every vertox back to
ita original position, we regard this rotation as identical with the zero rotation: mare
generally we interpret two rotations as identical if they differ from one another by a
whole number of complete revolutions.



§ 1. Introducrory Examples 3

through 120° by ay, the rotation through 240° by a,, then we obtain
the following relations:

dy + 0, = a,

Gy + & =0 g =

Gyt 8y = @ + @y =

&t 2 =6,

&y 1 oy :“2 +a =g

a; + a, = O\

Thus the sum of any two of thc rotations ay, @, o, is defined afidis

again one of the rotations a,, a,, ;. We casily convince ourselyes that
this addition satisfles the associative law and evidently also.th(, CON1-
mutative law. IFurther, there exists among these rot&tu)hs @, ay, o,
a zero rotation g, which satisfies the condition LV

at+a,=¢a +a=ua

for every rotation a. N

Finally each of the three rotations ha@}n inverse, which when
added to the original rotation produces ghe"zero rotation. The zero
rotation is evidently inverse fo itself:esu, = au, sinee @y + @, = ay;
further —ay =a, and —a, = @y 8 «siice @, — @, =a,). Therefore
addition of those rotativiy & aﬁlﬁqﬁ]&éﬁéﬁﬁ‘mangle bringing the
triangle inte coincidence Wlth itself, satisfies all the axioms of addition
listed above,

We write out the la}v\éc)i’ addition of the rotations onee more, this
time in the convenichf form of a table—an addition table:

p §

p.\ 4.
O :
I o LI
~ |
W
L\ ty e ‘ 2 y
Qe - ] ]
e
mwJ iy oy s a,
\ ) i
a, y a8, ay

In this table we find the sum of two clements at the point of inter-
gection of the row corresponding to the first element with the column
corresponding to the gecond element.

If we wish to combine these rotations mechanically, then we simply
take the three letters a,, @, @, and add them according to the above



4 1. The Group Concept

table; moreover we car completely ignore the interpretation of the
letters ag rotations.

3. Klein's four-group

Second Example.—We consider the set of four letters g, @, «,. a;,
whose addition ig defined by the following table:

g ‘ a, a, ‘ 1y ‘
| | O\
ay g .' &y a, !_.a: _I .‘\:.\'
I | > X\
a, ay | a, a; | s | \ WL
ST G H H N R
e, a, | a a 1o l '\\
iy g @y [
R T T hx_a{{_
&
or at length: \
@y + g = ay )
Gy G = G dy = oy
wwiln dbrdu iy -ofy T %2
e
4y T g = & Q Oy + dy =y
al—!—%:a‘(:‘qi:% Ay ;g =@y - @y =0y
) - Gy =05 N Gy == Oy Uy |- Gy = dy

Addition issdéfined for any two arbitrary letters of the set. We
prove at onpe\:that this addition satisfles the associative and com-

mutative laws.

Thg;i%«t”ér &, possesses the characteristic property of the zero thab
the sum’of two clements, one of which is g, is equal to the other
glamient.

N Tt is therefore evident that the conditions T, I1, TII, V are satisfied
in this ““ algebra of four letters ”. In order to convince curselves that
coudition IV is also satisfied, it is sufficient to refer to the relations

G+ ay =y, &y <+ 0y =y, Gy + = ay, a5+ a3 = G

according to which each letter is Inverse to itself (i.e. when added to
itself produces the zero).
This “ algebra of four letters " conld appear at first sight as a
mathematical game, a pastime without significant content. In reality
{H 240}



§ 2, Definition of a Group 5

the laws of this algebra expressed in Table IT have a very real signifi-
cance, with which we briefly acquaint ourselves, We mention
murenver that this © algebra of four letters ” is of great importance in
higher algebra. It is cailed Klein's four-group.*

4. The rotations of a square

Third Example—By means of considerations similar to those in
the first example we can construet another * algebra of four letters ”
different from the one above. We consider a square ABCD and the
rotations about its centroid which bring the figure into coincidenee
with itself. Again we identify any two rotations which differ from, éach
other by an integral multiple of 360°. We have therefore alfolether
four rotations, namely the zero rotation, the rotations theotgh 90°,
through 180°, and through 270°. These rotations in thiKo.fder we de-
note by the letters ay, @,, @, @;. If we again understanddy the addition
of two rotations their successive application, then We‘obtain the fol-
lowing addifion table, just as in the first examplle}‘

| i NN/
Gy . & D) Fa
o\
. iy s a.
W s artd b ra‘%l‘hi:t‘a?"’y_c_rg?ln
_____ 23 :
* o, e tg %y
S
AR
e, it @ [}
[ et » 0 1
2\\ 2 ¢
) .
0l thy y ay oy
\¥

In the s ni'é'.'wav as in the first example, we can consider rotations
of a reguldiN Eanta.sc:;on, or hexagon, or in general #-gon. It is left to
the reades to carry through the appropriate details in this direction
and«iﬂc?cénstmot the corresponding addition tables.

3

§ 2. Definition of a group

Before we continue to consider other individual examples, we
collect the results of the examples already investigated and introduce
the following basic definition.

* After the great German mathematician Felix Klein (1848-1925).

2 (H219)



6 1. The Group Concept

We suppose given a certain finite or infinite get* @; (nrther we
assume that any two elements o and & of the set @ define a third ele-
ment of this set, which we call the sum of the elements ¢ and & and
which we denote by ¢ + 5. Finally we assume that this eperation of
addition (the operation whereby we proceed from two given cloments
a and b to the element « + b) satisfies the [ollowing conditions:

1. The Associative Law. For any three dlements a, b, ¢ of the set 7
we have the following velation ~

fat+bdto=a+(b+0 O\

This means that if we denote by d the element of the set & which
is the sum of the elemcnts ¢ and b, and similarly by esthe elemenst
b + cof theset & thend - cand ¢ - eare one and thcldme eloment
of the set . y ~:\

II. T'he condition for the existence of a nullN\ement. Among the
clements of the set G there s an clement whishfwe call the null element
and denote by 0, which is such that, for: wh arbitrary choice of the
element a, we have '

a4+ 0 =10, L W=

IT1. The condition foMﬁa‘e" F#;JE@F‘M@' B e Biferse of each given ele-
ment. Corresponding to any given element a of the set & 1we can find on

o

element —a such that K
¢ \J
dd(—a) = (~a) -} a =10
A set ¢ with ag\ I)peration of addition defined in it, which satisfies
the three conditigns listed above, is called a growp. These conditions
themselves aféhéalled group avioms.

If, as\#el as the three group axioms, the following condition is
alzo sa%mﬁ\ad in a group G, viz.

. IV The Commutative Law:
N/ atb=0b+a

then the gronp is called commaudative or Abelian.t

A group 1s called finite if it consists of a finite number of clements;
otherwise it is called ¢nfinite. The number of elements of a finite group
is called its order,

* Soe the appendix at the end of this book. Tn what follows we sha!l assume that
the reader in quite conversanl with the contents of this appendix.

T After the gifted Norwegian mathematician N. H. Ahel (1802-1829).
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Now that we have made ourselves familiar with the definition of a
group, we gee that the examples given in the first paragraph of this
chapter are examples of groups. We have therefore so far become
acquainted with the following groups:

1. The group of whale numbers,

2, The group of rotations of an equilateral triangle (this group is also called
4 eyelic group of order 3).

3. Klein's four-group. A~

4, The group of rotations of a sguare {cyelic group of order 4}

At the end of § I the rotation group of a regular #-gon was hdn-
tioned (eyclic group of order ). All these groups are commutati\'e,
and the} are all finite with the exception of the group of Wholé numbers
which is evidently infinite. RS

§ 3. Simple theorems about ‘gﬁsﬁps *

1. The addition of any finite number of group ‘elements. The first rule for the
removal of brackets

The associative law is of very graeat 1mporf:ance in group theory
and also thronghout algehty. dBWHfM%%QT\Eel%an define the sumn not
just of two group clements buéithe sum of three elements, and in
genera! the sum of an arbitratyMinite number of elements; and in order
to caleulate these sums wé “oan apply the usual ruies for the removal of
brackets. ¥ N

Let nus suppose by way of example that three elements a, b, ¢ are
given, then for shelmoment we do not know what is meant by the sun
of these three'glements, for the group axioms speak only of the sum
of two elerfitnts, and expreasions of the form e 4 b + ¢ are not yet
defined, £ But now the associative law states that if on the one hand
we ad@the two elements

~O aand b+ ¢

\
3

and on the other hand the elements
a-+bande

awe {hen obtain one and the same element as thetr sum. Thus this element,

* Tf the readsr wishes first of all to make himesclf familiar with other examples of
gronps, be may skip this paragraph and come back to it after reading Chapters 1[I-TV,

| Hewever we must realize that in the casc of a noa-commutative group the order
of the elements which are added must not bo altered.
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which is the sum of @ and 5 4 ¢ and also of & + b and ¢, may be
defired without ambiguity as the sum of the elements @, b, ¢ (in this
order), and hence will be denoted simply by @ + b + ¢. Thus we can
regard the equations

¢ +bt+ec=a+(brc)=(@+b) ¢

as defining the sum ¢ -|- & | ¢ of the three elements ¢, &, c.
We can conveniently define the sum of four clements «, b, ¢, «
to be, for exampls, equal to ¢ 4 (b + ¢ + d}; and in this conne*‘rih}

we prove that Ko \

abretd)=(atb)+ict+d)=(atb| o A
Tirst of all, from what has heen stated above, we have) \ \ )
a+(b+c+d)=a+[b+(o+ri’5}\
But for the three elements @, b, ¢ -|- d we hd\e\ v
@b+ (o + d)] = a{r:f))}- € k)
On the other hand, for the three elcxiohts a L b, o, d
(@4 5) + (o + &) 2 Dt S 1

and this is what we set oup&d prove.

Now we assume that fhie'sum of any (n — 1) cloments has d.]_ICa 1y
been defined; then WC\&\ﬁIIL the sum of the # elements o -~ ... -+ 7,
to be @, + (g + L) a,), and we can therelore regard the expres-
slona; + ... B as being defined for arbitrary » by the method of
complete induption.

TheorephaLet n be any natural number* For every natural number
men 1{3 hae

o~ (?"1 + ) ] (am+1 + + an) =i ‘I_ + L (1)

\ Pmof The proof will proceed by the method of complete indne-
tion.T For n =1 the theorem simply statea that ¢, = a;. We assume
that it is true for » <<k — 1, and prove it for n = %k We consider
first the case s = 1. Then {1) becomes

o Filet+ ... Fa)=0a+...+a

* A patural number is a positive whole number.

1 It is recommended that the reader shounld first weite out & proof himself, and then
compare it with the one given in the text.
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But this 1s just the definition of the expression ¢, — . . . -+ @y There-
fore formula (1) is true for » = & and s —= L.

Now let us still consider # = % and let us assume that our formula
is proved for m = ¢ — 1; we prove it for m = g. Since the formula
(1) is obviously true for #n = n, we can assume that ¢ < £. Since the
truth of the theorem for n <C & — 1 is assumed, we have

{ay & e+ (@g oo )
e [0 e Gay) F A (@ AT 0 Q
The agzociative law, ap plied to the three elements (@, {-. . —|—a'~,_1)
@y (@gyy - - - - + @), gives \\
[t oo e+ 0 + e F a0
= (ot 2 + [0+ (@ + - R

But the expression in square brackets on the r\bght hand side 15 by
definition equal to

B¢ + Bou1 1 - - }_a\

N,/

Therefore we have
(o + ¥ @tbamﬂwamg -+ a,)
R A IR I\ B AR
But since the formula H} is assumed to hold for # =% and

m—=gq—1, the rzght\l@nd gide of this last equation is equal to
a -+ oa. Therefore

(“1+ ‘Pa)+(u+1+ ceta)=a 4 T

O
which 1s whauwe set out to prove.

'\
2. The null element

Th% ‘condition for the existence of a null element reads: In the
gh‘qup there extsts a certatn element O such that for every element a of the
group the condition

a+0=0F+a=ua {1)
is satisfied.

Nowhere does this condition contain the assumption that there
can be no other clement 0’ different from 0 with the same property

at+ 0V =0+a=a (19
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for every @, Wrom the following rather move general proposition it
resulis that in fact no such element (' exists. \\e speak of this as
the theorem concerning the unigueness of the null element.

Theorem.—If corresponding to any element @ of a group G there is an
element O,, whick satisfies one of the conditions

a+0,=a or O,+a=a

then if is necessary that 0, = 0. I\
Proof-—We agsume first that o + 0, = @, then it follows that
O\
{(—a)+ a1+ 0, =(—a)Fa=0 O
ie. 00, =0 N
But from the definition of 0 we have '\\
00, =0, N
Whence 0,200
@ \
We can equally well dedace the 1dc;ut1t} 0, = 0 from the assump-
tion 0, 4 a = a.
www.db'r’mﬂib;-ary_m.g‘m
3. The inverse element N

The condition for the@xistence of an inverse element reads: Z'o

every element @ there co-{r@pmds an element —a such that
Q%
\f\—a)+a=a+(-a)=0

is lrue. A\

Here again ‘enly the existence of the element —a is asserted, und
pob its umg‘xéncse We establish this uniqneness in the following
theore -

i {wb\; em-.——] 'f corresponding to a given element a thore exists un
e{a@}{ﬁt o, which satisfies one of the conditions

\\' a+a =0 or '’ +a=0
then @ = —a

Proof —Let a -+ @’ == 0. Then it follows that
(—ayt+@+a)=(-a)+ 0= —a

and therefore [(—a) +e]lta = —a
whence O0+4+a =—
"l.e‘ a! = —{
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1n an analogous manner we can deduce @’ = —a from the assump-
tion o’ 4 a = 0.

Therefore corresponding to a given element @ there exists exactly
one element & which satisfies each of the cquations ¢ -z =0,
@ - @ ==1{, namely the element —a.

Let us consider now the element —a. Since the element a satisfies
the equation

—g¢ +a=0
A
iv ig just the element x = —{—a) corresponding to —a of which, wb
wore speaking. Therefore R \
—(—a)==a QO

4. Subtraction. The second rule for the removal of brackets :

Suppose two elements a and & of the group ¢ arg given. Corres-
ponding to the clements @ and & there are inverse‘elements —a and
—b&. ()

The sum of the elements b and —a wnil e leed the difference ® be-
twesn the element b and the element a, cmé’ wah’ be denoted by b — a,
thus:

@Wﬂ'ﬁ?h%'ﬂfﬁm g.in (1)

Hence this equation definas the. dr ﬂ’ erence b — a, 1.e. defines subtraction
as an operation by means, ot which the difference of the elements 4
and @ is determined. (@ 4he basis of the associative law and the
defiuition of the element- —a it follows that

@) 5+ (—a) fa=b (~ata)= @)

x’\»’
The element Bs therefore equal to the sum of the difference b —a and
the elementasT

In othc:r words b — e 1s a solution of the equation
A
\'\3 zta=0> {3
Tt is also the only one; for if the element ¢ is a solution of the
equation (3}, then ¢ 4+ 2 = b, which means that

cLtat{—a)y=>56+{(—a)

* Sometimes * right difference . See below.

t In non-eommutativo groups the sum b + (@ — b} is not in general equal fo 2.
This is very important in group theory.
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and therefore
c=bt+{—a)=b—ua

Similarly the equation
a+-xz=>h (1)

hag the unique solution ——¢ - b,

Remark.——Often we call the solution of the equation (3), viz. the
element b — @ = b 4 (—a), the right difference, and the solution{d{
the equation {4}, viz. —a + b, the left difference of the dcmenrm@ aud
a. For commutative groups ewdentlv these two concepts 01 rhi’fuc e
coineide. « )

Corollary.—If either a +b=a+corb+a=c¢ e ia srf'u 5 b= 6.

The main property of subtraction is exprcabud lxz &he formula

—la+by=-—b—a v/

[We remind the rcader that in what (ﬂi\\n:q —bh — ¢ stands [or
—b + (—-u}, Le. for the sum of the two ements —b and —a.]

Now the element —(@ + b} 13 the tnlquely determined clement
of the group, which satisfics the cmdmml

www . dbranlibr ary org.in

a b/ Tt )
But \
a+ b3 Q‘% (~e)l=a +[b+ (=8)] + (—a)
% S0t (o= o) =0
Thus the\elﬂmcnt @ == —b — ¢ satisfies the condition (5}, and

hence —(a»\+ by = —b — .

By aﬁﬂns of complete induction we obtain from this the general
resuliy

.»\:';\,' —ay F o ) =y — G —
\whpre the element on the right-hand side stands for
(—an) + {(—ani) + ...+ (=)
From this, according to the definition of subtraction, it follows thatb
ce—(@a-by=c—b—a
and in general

e—{a ... ta)=c—8,— @y —...—a (6)
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Tn commutative groups the order of the elements 18 irrelevant, and
we can write
e—f{g,+...F @) =¢c—ay—...— 0, {6")

Formula (1) in section 1 and formula (6") express the familiar
rales of clementary algebra for the removal of brackets in addition
and smbiraction,

5. Bemarks on the group axioms ¢
We have not set ourselves the task of giving a smalfest number of

assuinptions which are sufficient to define the concept of a grotipe)

We have postulated that the null element shall satisfy the congiiiaibns

a+0=0+F+a=aqa )

and that to every element ¢ shall correspond an mvcrse:}lemeut —a
satis{ving the conditions

¥

N
at(—a) = (—a) +a =0
But it is in fact sufficient to assume only ohevof the conditions

g+0=a or QFd=a
wwwrd br‘_aql‘i,i;rr‘ary org.in
and likewise only one of the conditions
@+ (—ay =P ot (—a)+a=0
\

Finally we mention h@»ﬁl the definition of a group {§2) the
axioms TT and ITT, on the e¥istence of a null elernent and of an element
inverse to every given“element, can be replaced by a single axiom,
namely the followirig\ -

The e:niste?@géb‘ a difference of any two group elements: For any
two elemenésii‘dnd b we can find © and y such that @ +x =1b and
¥+ a = b:

Werletve it to the reader o justify these statements. (He may
for{eRample read up the proofs in The Theory of Groups by A.
G.r}urosh.)
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EXERCISES ON (FIAFPTER T

1. Bhow that in an addition table for a finile group every element can appear
no more shan onee in each row or column, and honee that every clomont appears
exactly once in each row or column. (For this proof you will need the inverse
element.)

2. Make use of the property proved in FEx. I to show that thers 13 only g@he
possible addition table for a group of order 3.

3. Make use of this same property to write down the possible a,df.lm{m?tnlei
of groups of order 4. Deduce that every group of order 4 s \bclnm \

4, If 2 is an element of a finite group of arder # show thal at .Jm*,h one of the
elements AN

7>
g ata .., 0. .—a ,,\'\"
N )
T tlﬂ'lcﬂ \ y
is egual to the null element of the group. \>
4, Which of the following are groups? ¢ :2\

{1} The positive real numbers {a) with re;i-;f;é’g.t to ordinary addition as the
gronp operation, and (&) with respect to orcliimyy mulliplication.®
{ii} The positive and negative vz}mle numbers and 0 with respect Lo

multiplication. www dbeh \rllbl‘ary or
fiii) The even {odd} ﬂumb(,lsw.qgh respeet 50 a.dchtmn {D ig aven).

."\
S
&~
A\
WO
P
b N\Y;
O
L
~0
\‘w
) .’\
\
AN

* See Chaptor IIT for remarks un the additive and multiplicative terminology
for a group.



Chapter I

GROUPS OF PERMUTATIONS

"o
- . L. . fe \ A
If the three people David, John, and Peter are sitting, in thig-order

from left to right, on a seat, then they can regroup themslycs in six
diflerent ways, namely (always numbering from left to gight):

{1) David, John, Peter {3) John, David\Pefer
{2) David, Peter, John {4} John, Pg{eg; David

{5} Peter, David, John '\ &/
{6) Teter, John, Daxid >

The change from one seating-arranggment to another is called a
permulation, We write pefﬂﬁﬂﬁ%h{;%fﬁﬁhﬁyfoﬁgm% way:
David,~John, Peter
Jolgi‘; Peter, David

and understand by thi§ éﬁ‘e}that John hag taken David’s place, that
Peter has taken John's, and that David has taken Peter’s.

In a similar wiy,We can speak of permutations of objects of any
kind. Since the farticular nature of the objects permuted is irrelevant
here, we sha,li{élenote these objects by numbers, and speak of permu-
tations of‘@vﬁfbws. Thus with the three numbers 1, 2, 3 we can form
the follewing permutations:

ey .
Ay 03 6 6D G Ge)

Each permutation signifies that the numbers standing in the top
row are replaced respectively by those standing underneath them in

. 123 . .
the bottom row. We call the first permutation (1 5 r}) the wdentity:
here every number stays in its original place.

In the second permutation G ; Z) the number 1 remains fixed,

15

N
§ 1. Definition of a permutation group o
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the number 3 takes the place of the number 2, and the number 2 takes
the place of the number 3; similarly for the other permutations.
A permutation on # numbers 1, 2, ..., n may be written in the

gencral form
L2...n
R

Here 4y, %9, . . ., %, are just the numbers 1,2, ..., #n again, but
written in a different order. By way of example we consider O

12345 RN
3145 ¢ O

Fividently here n = 5, iy = 3, & = L, 5, = 4, i, =¥, =2,

Tt is well known that there are »! possible;p}w_\rhutations of 7
numbers. v

We turn back to the consideration ofypermutations on three
numbers. The addition of two permutatidu® means their successive
application, the first followed by the Sevond, The result is agai 2
permutation, and we call it the sum,6f the two viven permutations.

By way of example Wamddb?b}@lﬁiirmytm@ns

12 30 g (123
2%/ ® 391
-

By the firat pern&%‘;‘ﬁ’on 1 is replaced by 2, by the sccond permu-
tation 9 is unchanged, and therefore by applying the first permittation
and then thegéebrd 1 is replaced by 2. In a similar way, by their
successive ggplicat-ion, 2 is replaced by 3, and 3 is replaced by 1.
Theref OQ\ &

O 128\, (123\_/123 0
AN 213/ 7\321/ \231

P N\.7
./ In this way we can add together any two permutations. In order
to be able to write down the result of all these additions in a convenient
form, we introduce the following notation:

/123 123 BEE nes
P°—123) Pl—(132 Py = (213) Pa—(zm)

/123 /123
P“_(312) Ps“(:—ml)

P, denotes the identical permutation.

(5]
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We obtain the following addition table:

First | Second Term
rll I
ere F [} | P 1 P 2 P 3 P in P B

| P | p | k| B, P | P | B
Py Py By | Py Py | Py | Py

Coop, P, I B, i P, | P, | P2 B O\

e e :\’\

P, Py | Py 0 Py | Py | Py | Py Wl
P, AN A AY:S

I .. |

| r, PﬁiPangfPl P\x« 1

In order to find the sum of two per mufatw’n for example P, - P,,
we must take the row which is headed by the first permutation and
the echimn which is hcadé’d"’ﬁ‘}fdﬂﬂé%ﬁ&'ﬂ&y FEei8um of the two per-
muistions stands at the point oivm,tcrsectlon of the selected row and
columin: 1, + P, = P,, A

We carry out the deballs\qf the caleulation:

93 123
St n- ()

and, by conside-ta’tgro'ixls similar to these that led to equation (1), we
hﬂve “\x: ) ) 9 3 123
\J 123 1¢ {12
Q (2 1 3)+(3 1 2) = (1 3 2)

thtreft)re P, +P =P

\xé leave it to the reader to verify the whole of the addition table in
thiz way.

We convince ourselves at once that this addltlon satisfies the
asgoriative law, 193

The identical permutation Py = (1 33
a null element.

Finally every permutation has an inverse which when added to it
results n the identical permutation. The permutation Imverse to a

) clearly plays the role of



18 H, Groups of Permuiations

given permutation brings back to their original places all the nwmbers
altered by the given permutation. Thus for example

/123N 123
231/ \313

Tn order to find, from the addition table, the inverse of a given
permutation, we must look for the element Py in the row corresponding
to the given permutation; the colums fu which P lies corresponds to

the required Inverse. We easily verily that this gives: Q|
— Py~ P, — P =1, Oy
— b =0 — Py = Py ‘\
—P,=P, —P, =D \

Therefore addition of permutations satisfies all tLL\ group axioms,
The set of all perinutations on three elements is thigdfore a group. We
denote it by 8;. The gronp 8, is finite, and of\oldpr 6. Tt 1s nof cum-

madative, In particular, for example: ¢
P2+P:i:.35~3

. s T £ )-3, *_ il)1
\a\rww,dbra@libf;ary.ol‘g.in

&

§2. The coj:l'i:e’pt of a subgroup
Examples frommthe theory of permutation groups

1. Examples and deﬁm‘%

It is naturall 15.9 ‘ask oneself the question: Ts it possible to find 2
proper suba%of the group of all permutations on three numbers,
which is #sé6if a group with respect to the same law of addition?
We casiy\donvince ourselves that it is possible,

Let us congider for example the two elements Py and P, Woe
d\edhce from the addition table that

vV P, P, 51[,
II+P1
P]+P0:IJ1
I’1+P1:PU

‘We sec that all the group axioms are satisfied, and in particular
—P,==P, and —P, = P,. This means that the two elements #,
and P, form a group, which is a subset of the group of all permutations
on three numbers.
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In a similar way we convince ourselves that the two elements P,
and {7, form a group, as also do the elements P and Py,
The two elements P, and P; do not form a group, since

By + Py=1P,

- Le. the sun of Py with itself is not one of the pair Py, P;; nor do the
elernents P, and P, {orm a group. These simple considerations justify
the introduction of the following general definition:

1wy growp O 15 given, and of the set H, consisting of certain elements
of (7, 18 z'r‘éelfa growp with respect to the same low of wddition which hoi,‘(i’e\
in (¢, then {1 is called o subgroup of the group &. Thus cach of the pairs
{(Po, 1), (P, Py), (Py, P} i & subgroup of order 2 of the graup b3
The gronp S, possesses no other subgroups of order 2. From the
definition of a subgroup it follows that every subgroup & of a group
& must contain the null element of the group ¢; theréfote cvery sub-
group of order 2 of the crmup 8, has the form (P, Pj,Wheret =1, 2,
3, 4 or 3. But we have seen that 7 cannot be equalte’d or 4, and there-
fore thiere remain only the subgroups LOIISldGI‘et‘j\

(P()! l)a (Pus P2)1 (Pm P

The group 8, also posé;eé'ééﬁ% @hbwbﬁ»p‘attmwmyy of three elements
(2 aubgroup of order 3). This is the subgroup (P, Py, P,). The reader
will be able to convince himselfth at this is the only subgroup of order
3 of 8,. There are no SllbUI‘OHPo of orders 4 and 5 of the group S,.*

lheruiore the group Lhaq ths- following subgroups: three bub
gronps of order 2, namaly ) APy, Py), { Py, P5); one subgroup of
order 3, namely (P P P

Tn the same we Y as we havc investigated the group Sg, we can also
mvestigate thegtoup S, which consists of all permutations on four
numbers,

The rrwup S,isoforder1.2.3 .4 =124.

Ifl [n genéral for arbitrary n thc permutatlons on » numbers form the

P PR, of order 1.2, 5.

T e law of addition is the same in each of these groups: The
addition of two permutations on # humbers means their snccessive
application working from left to right.

* Wa can convines ourselves of this by investigating the ten subsets of the group
8 which contain the eloment J, and consist of four elements, as well as the five
subsets which contain P, and consist of five elements. But the non-existence of sub-
groups of &, of orders 4 and & follows st onee from the following general theorom
which will be proved later {Chapter V1IT}: $'he order of every subgroup H of o finite
group G iy a divisor of the order of the group G.
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We remark finally that the group S, of all permutations on n
elements is often also called the syminelric group of permutations un »
elements.

Every subgroup of the group 8, is called a permutation growp.

2. A condition for a subset of a group to be a subgroup

In order to prove that a certain subset H of a group & 18 & sub-
group, we make use of the following appropriate general theorag:

A subset IT of a group G is @ subgroup of & if and only 7f the folldwhing
condittons are satisfied: )

1. The sum of two elements @ and b of H (in the senkhen which

addition is defined wn () 15 agmin an element of ITLN
2. The null element of the group G 45 an dement o )Ef >
3. The inverse of each element of IT is aguin exnlament of H.

In order to prove this it is snlficient to obseiye that our conditions
simply require that the law of addition ¢#fited in ¢ and limited to
elements of H satisfies all the group agipins. We veed not postulate
the associative law. Tt is satisfied for thebddition of arbitrary elements
of the set (7, and therefore in pafficular also when these elements
belong to the set B. ¥ dbraulibrary.org.in

™\
SN g

§ 3.* Permutaﬁong...g;fansidered as mappings of a finite set
onto i@f.’ Even and odd permutations

1. Permutations t;o:isidercd a5 mappings

We have :iilk'estigated the concept of a permutation m an ele-
mentary aud Bomewhat primitive way, as is usual. 1f we do not mind
using geheral mathematical terminology, then we can define a perinu-
tatiop bn n elements simply as a oneto-one mapping f of the set of the
gizedvn elements ondo dtself.

N

\ Y “We assume that our elemenfs are the numbers 1,2,3, ..., #;
. 23 ... . - .
then a permutation (1 3 " ) 18 specified by a function
Gy Uo Gy . . . Gy

£33 :f(k). k-:l,?,...,?%
whose argument and values are the numbers 1,2, 3, .. ., n.

* The reader to whom this parngraph presents difficulliss sy omit it ab o first
reading, and need only come back to it just befure Chapter VI In any casc, before
cewding this paragraph, the reader must be familiar with the whole of the appcudix
which is at the end of the ook,
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The valnes of the function which correspond to two different values
of the argument are themselves always different.

In particular a permutation is corapletely determined when the
value fk}, i.e. @, 1s known for every k.

From this it follows that it ig quite unimportant in what order we
write down the numbers in the top row. What is important is that
anderneath the number  there stands the corresponding nurmber ay.

For exanple
21
42 .

2\,
represent two ways of wiiting one and the same permutafion. { This
ohservation which is basically self-evident can alse be formylz}j:-ed as
follows: Suppose the permutation 2.\

2% 2

A\

A:(]_QS...-?@) v )
ay Gy @ -+ OBy N

is oiven, &

i

V"

123 ..,

P:(, QA @)
W %gﬁrpﬁftlbra?:n .org.

in :
i any permutation on the sameshiimbers 1,2,3,..., 7, then the

permutation (1) can also be wristen in the form

A\
(0P Ps ---Pﬂ)
) By Gy - - O

2. Even and odd pc;‘nﬁiﬁﬁons
Supposc t-hc:jpérfnutation
£ \S

A\ww A:(lgs...n)

A\ (4 fty Gy . » - On

Is gfrqm’l\, :

\W\ﬁ consider an arhitrary set which conststs of any two of the
nembers 1,2, 3, ..., % and we denote these two numbers by 7 and &.
This set is called a number patr. It is the pair consisting of the ele-
ments i and /% and it is denoted by (4, k).* It is well kmown that the

* 10 this context the coneept of a pair doss not imply any condition on the order of
the elements of the pair: (4, &) and (%, i} are two ways of writing one and the same
pair, The pairs of elements which ean be selectad from # given eloments aro also called
combinations of the second class of tho n clements. The combinations of class p ars
just the anbsots consisting of p eloments.

3 (K 249)

N
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number of pairs which can be chosen {rom » given elements is equal
to*

7 n{n — 1)

2/ 1.2

The pair consisting of the numbers ¢ and % s called regulas with
respect to the permutation 4 if the differcnces ¢ — % and o, — o,
have the same sign, This means that if ¢ <2 & then we must have
6 < @y, and if © 2= F then a; = ,. Otherwise we say that the p;{ir
is ¢rrequlur with respeet to the permutation, or that it is an ¢
Thus if the pa,i_r (7, k) is an inversion then cither ¢ <2 % and
or ¢ = kand a; << . O

By way of illustration we consider the permutatlonb of Q}we group S,

RuePgioN.
s

\({._‘;\_'_'_'.-.-.

) L)
In the permutation I, - E 3

are regular.

™
b

) there 15 D "i‘(}«'el‘smn‘, all pairs

|

. 123 .
In the permutation P, = (1 3 2) ’Chel\l‘i a. bmnle inversion {2, 3).
123 :
In the permutation P, -={ 5 th(,l& is a gingle inversion {1, 2}.
W db_a},tlib ary.org.in
In the permutation PJ, (1 i ‘1}) there are two inversions: (1, 3)
and {2, 3). -
, 123 :
In the permutatkkh‘P = there are two nversions: (1, 2)
312
and (1, 5). .
. 5 o
In the ps;rrr}ﬁtat-ion P, = G 5 ?) there are three inversions: {1, 2),

(1, 3} and{(2,
De fa@f{m —A permutation

inversions is called an even permutation;

which contains an even number ol
a permutation which contains

ol ‘@dd number of inversions is called an odd permutation.

Q

“We have seen that the even permutations Py, Py, and P, in the

group S, form a subgroup. We now sef ourselves the problem of show-
ing that this is true for every group S,.
The proof depends on a few preliminary considerations to which we

now turn onr attention.

By the sign of the permutation. A we tnderstand the number -1 if
the permutation is even, and the nnmber —1 if it is odd.

* We remark incidentally that the method givon belew allows us io aveid the
logivally unsound procedure which is often presented in school.
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Departing from the usual terminology we shall understand here by
the sign of the rational number r the number 41 when r > 0, the
mumber -7 when » <7 0, and the muomber O when v = 0.

We denote the sign of the number 7 by (sgn r},* and similarly the
gign of the permutation 4 by (sgn 4).

With this terminology it is clear that the sign of the permutation 4
Is equal to the product of the signs of the {n(n — 1) numbers of the

k ) i —k E—y .
form , where the fraction i , for each pair
y — fty G — @ Gy —
of numbers 72, k& taken from 1, 2, 3, ..., %, Is only formed once, A

We use thig observation in the proof of the following theoremg \)
The sign of the sum. of two permutations is equal to the product oftheir
SEFHS, N

Ruppoese we are given two permutations ¢*0

N
A_(lﬂ‘*n) BZG;Z:)
a-l-aQQ'S"‘a'n 1 2"{\3. "

Their sum is evidently the permutation s\
123
] °* A ]'
4+5 (bul b, {Smﬂ:'"- . ba,‘) h
www . dbraulibrary.org.in .
The sign of 4 is equal to the prodiict of the signs of all the fractions

Nk
i"\\
N\ @, — i

A\ .
The sign of B is equaktp the product of the signs of all the fractions

3
) i—k

~O A

But sinee u‘*e\ may evidently also write
AN @ @
o"\\' w B o= al 20 n)
\ ; (5@1 bag e b“«
it follows that:
The sign of B is cqual to the product of the signs of all the fractions

G-.a' — Iy

By — ¥

4 Oy

. From this it follows immediately that

* Evidently for any two rational numbers r, s we have {sgn r}{sgn s} = (sgn s}
We make use of this vesalt below.

N
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£ -k a; — iy
(sgn 4) . (sgn B) == the product of all { sgn ———= |+ { sgn =
S — oy =, — by

i—k a;—a
= the product of all (sgn . ————)

»
T — &
= the product of all (sgn b—_—b-—)
But this last product is the sign of the permutation \
¢\
123 ...n O
by B by ... b,
13 2 3 L] - LS 3

and therefore of the permutation 4 + B; and this}sfwihat we aot oub
to prove. ¢

From the theorem just proved it follows.thit: The swin of tiwo
like* permutations is even and the sum of tido wenlike§ permutations 13
odd. 'The identical permutation containd\ie Anversion and is therefore
an cven permutation. Further \ .

W\arnéidﬁ_{'a&fl'i@r)ar:y_gr‘g_in
and therefore the sum of a’giv?ér’l permutation and its inverse 13 even,
From this it follows, by wifah we have just proved, that a permutation
and its inverse are 1ike‘\(€.e? belong to the same class).

Therefove: Thedsunt of two even permutations is even, ihe identical
permulation s gben, and the inverse of an even permutalion S
even,
It folly {Prom this that the sct of all even permutations on #
clement-s%é‘a' subgroup of the group S, of all permutations on # ele-
ments\The group of all even permutations on n elements is called
the altdrnating group on n elements, and s denoted by A.,.

T heorem.— The order of the group A, is eyual to $nl. Tn other words,
just half of the permutations on n elements belong to the group Ay
In order to convinee ourselves of this it is sufficient to establish a one-
to-one correspondence between the set of all even permutations and
the set of all odd permutations on n clements. We establish this
correspondence if we choose any odd permutation £, and then

* That is to sav, the sum of two cven or of twe odd permutations.

1 That is, the sunt of an oven and an odd permutation, or the sum of an odd and
an even permutation.
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sssociale with every cven permutation 4 the permutation P + A.

Tu this way it results that:
1. Te every even permufation there corresponds an odd permu-
tation.

9. To two different even permutations there correspond two dif-
forent odd permutations.

3. Tvery odd permutation B is associated with one {and only one}
even permttation, namely the permutation —P -+ B.

all oven permutations and the set of all odd permutations. \)

EXCROISES 0N CHAPTER IO

. R : A
1. (&) Find the sum (} 2 z ;) - (; 2 ";' 4)

{tj Calculate tho inverse of each of the permutatm\s in {a).
(¢} Find the number of inversions in each, of t}}b permutatmns in ().

1 32;) be added“to itself to produce ([ 23 4)?

p §

2. How many limes must ( 1234

3. (n) Find some subﬂrollgg‘gﬂt@m&;l.gg grl]yr%ail numbers {where the group
operation is ordinary addition).
(4% Lisl the subgronps of Klein's fnu_r-group
(e} List the subgroups of n&e froup of rutations of & square.
e .
. PProve that the permm'\:}u{)ns (clrl i i :4) leaving invariant the potynomial
Ty, |y -y, Le for whleh g gy T Ta + 13 identical with 2@, + ¥z + T4
form a Sllb}_,]_oup £\ of brdcr 4 of the symmetrlc group 3, and writo down its
sddition table. :'\
{H is called*the group of the polynomial @@, -+ % + 24 A polynomisl in
xn B By Lg Wse group is & itsclf 19 eallod sy mmetrical.}
Fmd the group of the polynomial 2,7, 4wy, and verify that it contains
ad & gtlhn'roup the group H of Ex. 4.
A\

O~

N
Thercfore there is a one-to-one correspondence between the set of



Chapter I

SOME GENERAL REMARKS ABOUT GROUPS
THE CONCEPT OF ISOMORPHISM O

O\
§ 1. The *° additive *> and the °‘ multiplicative *%.J o~
terminology in group theory A >

The principal ingredients in the group concept ale\\

() The set of objects (numbers, permumtlons “rotations, ute.)
which form the elements of the group. ,

{5 A certaln operation or law of combma!{{m, thh we have called
addition and which, given any twuo.elements a and & of our
group, allows us to find a thrd element @ -+ b of this group.

We have chosen the wozd g@l@nﬁ ;,pyddﬁ snibe the law of combin-
ation in our group. Obviously the'choice of thiS or of any other word 13

basically of no significance, (We could just as well speak of the madti-
plication of the elements, bany group instead of their addition, pro-
vided we use not the b%iu‘%o but the multiplicative terminology. We
are already familiay’with the additive terminology, or additive nofa-
tion, for a grougf (/Now let us consider how the group axioms can be
expresged in mQ.Ltlphcatne terminoclogy.

Firgt ofzallwe postulate that, corresponding to any two elements
@ and b ghdur sct & (see Chapter 1, § 2), there is a uniquely defined ele-
ment, & 3D, the produot of the two elements « and &.

~ lhe group axioms themselves then take the following form.

\ 1. The Associative Law:
(ab)e = aflc)

I1. The condition for the existence of a unit element. Among the
elements of G there is o uniquely determined element which we coll the
unit element and denote by ¢, and whick is such that

(e = @ == ¢a

for an arbitrary choice of the element a.
26
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ITI. The condition for the existence of an inverse of each given elo-
ment, Corresponding to any given element o of the set @ we can find an
element -1 of O such that

-1

ar” =g —=aqlg

We see that if the law of combination defined in a given gronp and
origmally called addition is now conceived of as multiplication, then
it 1s sensible to call the null element s unit, and instead of denoting
the mverse of @ by -—a to denote it instead by ¢ 2. ~

Historically the “ multiplicative ” terminology came first; nOW i
days it is used by nearly all authors, Insome cases the additive termin-
ology is preferable, in other cases the multiplicative terminology.
Finally there are cases when both are equally suitable. ‘

An example in which the additive terminology is nai;utjally the more
suitable s provided by the group of whole numbers;, m’lﬂl\e group oper-
ation here is just ordinary arithmetical addition\phe null clement 0
is the ordinary zero; the element —g has ifs ovdinary arithmetical
meaning of * minus g . S V

We can object that it is unnatural andineonvenient to call ordinary
arithraetical addition by the name of multiplication, and to speak of
the zero as the unit, and go on. But f{hé reader must be quite clear that
this terminology, in spite"6f ¥liikgaubibnecuionsen is perfectly possible,
and at any rate leads to no kind“ef inconsistency so long as we restrict
ourgelves to the study only(ef ‘the group of whole numbers, that is to
say that we consider onlia)single operation on whole numbers, namely
arithmetical addition. 3P we should wish to consider, as well as arith-
metical addition, mﬁitiplication algo, vsing the word in the ordinary
arithmetical seiséi/then calling addition reultiplication, in the way
that we have Hash describing, would naturally be ntherly confusing.

Agan Bnéa\mple of a gronp for which on the other hand the mul‘tipli—
cative t-r;r'r}inology is more suitable, we consider the group R consl f;tmg
of a.ll{i)ﬁ%itive and negative rational numbers,* thaf; iy, of a‘ﬂ rational

tibers different from zero. We consider qrdma-ry al‘lthllletl(ﬁf:l,l
gmﬂtiplj@aﬁon as the group operation in R. It is known to be associ-
ative, The number 1 satisfies axiom LI with respect to this operation:

a.l=ua for any ¢

Finally, corresponding to any element of the set R (therefore to any

- i . ' Ll .— Vg
tational number @ 4= 0) there is a rational pumber a1 = lja == 0,

* By rational numbess we understand all whole numhers as well as all fractions
2lg (P, ¢ intogral, g =03,
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which satisfies the eondition @.a-!' =1, Therefore all the group
axioms are satizfied, i.e. the rational numbers different from zero form
a group with Tcspect to arithmetical multiplication. Since b = ba
this group is commutative. It contains as a subgroup the gronp of all
positive Tational numbers (¢ > 0). In these groups we naturaliy nse
the multiplicative terminology.

The reader may convince himself that the negative rational numbers
do unot form a group with respect to ordinary arithmetical multipli;
cation,

Also the set of all rational numbers (including the zero) dosg™unt
form s group with respect to arithmetical multiplication, ginde the
zero possesses no inverse number. On the other hand we dee At vuce
that the sel of all rational numbers forms a group wagh Tespect o
arithmetical addition. I'he group of whole numbers is.fontained in this
group as a subgroup, \%

Finally, on this question of terminology, wegemark that for the
permutation groups there is noserious groum}ﬁn preferring the additive
to the multiplicative terminology or the oblies way round. In the mul-
tiplicative terminology, however, one of tite theorems of the Previous
chapter may be stated in a symmetrigdl forr, namely: The mizn of
the product of two permntativdBriswdiprab-foditgeiproduct of their signs.

Nowadays it is becoming mieré and more usual to change to the
additive terminology when dealing with commutative groups; but we
became acquainted with afi exception to this rule when we spoke of the
group of rational numBers different from zers, In this book we shall
retain the additive.fehminology also for non-commutative groups.

A

\§ § 2. Isomorphic groups
We eonsider on the one hand the rotation group Bj of an equilateral
riagle (Chapter T,§1) and on the other hand the subgroup A, con-
sigfing of the three clements Py, Py, P, (Chapter 11, § 2), ot the group of
all permutations on threc numbers. We denote by dq, a;, ¢, the cle-
ments of the gronp £;. We now set up between the elements of the
aronp R, and the elements of the group A, the following one-to-one
correspondence:

ity < Py
<> Py

oy > P,
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This correspondence preserves addition in the following sense: If an
clement in Hy Is writton as the sum of two elements of R, thus
for example ay + 4, =@, a -} o, =a, @ +a =a, and if we
replace every elorment in the equation considered by the corresponding
element from A, then the equation remaing true.

We recognize that the groups R, and A, although they consist of
elemnents of different natures (the one group consigts of rotations of a
triangle end the other of permutations of numbers), have the same
structie the addition tables of these groups differ from one another £
only in notation. If we change the notation we can thercfore gu
name the elements that we obtain identical group tables. ' \ \J)

(Ffroups, whose addition tables become identical when the elements are
sutehly numed, are called tsomorphic groups. R N

Tle definition of isomorphism is usually worded somegphat differ-
entlv. The process of suitably *“ naming *' the eIements"iEthe addition
table, which we speak of in this definition, means esspotially that there
1 sot D & oue-to-one correspondence between t-h,&lements of the two
groups. We give a definition of isomorphisgasbn these lines, in terms
of the idea of & one-to-one mapping. )Y

Defindtion I —Suppose that thel;'ejfiﬁ" given a one-fo-one corres-

pondence www.d]{l‘au[ibrary,org,jn
'g \ 3 gf

between the set of all elentertts of the group & and the set of all ele-
ments of the group G*,’\‘Wé shall say that this correspondence 18 an
isomorphic correspondenge (ot an isomorphism) between the two groups
if it preserves addytion. This means that:

If any rclation-of the form

\v
N\ hth=>0h

holds bétwoen the elements of a group @, then the relation which is
obtained by replacing the elements g, gy, gs of the group !G by the
cléwpénts g,', g, g5 which correspond to them In the gronp &, namely

glr + g2’ = g3Ir
is also valid.

Definition IT.—Two groups are called ?,'smm}ff}hljc ?f it 18 POSS{E)I{! o
set wp an -E-'SO*}??,O-?‘}?FE-T-.C cm;‘espf}?&d@ﬂﬁ& betwe?en them.
Remark. If we postulate that a relation

5’1+92:g3
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in the group & always implies a relation
g g =g

between the elements of the group &' which correspond to the elements
¢, Ja» s then the converse is also true, namely: Il for any three
clements g,', g5, g5 of the group &' we have the relation

¢+ =g

then the relation \

gi T G2 =13 (1)

o)
between the elements ¢y, g5, 75 of the group & which correspdiiy ts the
clements ¢,’, g, ¢4 is also trne. For if the relation (1) e not true
then we should have O °
W
G+ 9=+ %)

On account of the one-to-one correspondence bebween G and &' rhere
would correspend to the clement g, of the thp ¢ an element g, in
the group &, different from g,'; but by¥bypothesis we deduce from

S
h——Fe =%

. ro :)', '_- r
the equat-lon wwxgldkﬁ%éili‘b_i_‘algy_org_in
which contradicts g g =y

Theorem.—In the isqmo?ph-ic OPPERY
\\ . g——q

of the group @ oo’ the group G the null element of the one group corres-
ponds to the -n.xwlz dlement of the other group. Every pair of inverse elunents
of the ong gjifp;up corresponds to @ pair of inverse elements of the other
group. I\
Slwglipose that g, is the null element of the group &, and that the
@l{:\iﬂ}nt g, of the group ' corresponds to it in the given isomorpbic
“eorrespondence between the groups & and @', We prove that g, 18 the
null element of the group &”. Since g, is the null element of the group
G it follows that, for every element ¢ of this group,

N\

g+d=9
On aceount of the isomorphic mapping ¢ «<—- g’ it is true that
g? + guf — g!

whence g, is the null element of the group .
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Let g; and g, be a pair of inverse elements of the group @, so that
T 92 =G0

(where as above g, is the null element of the group ).
From this it follows that
N TR =9

Since g, is the null element of the group ' then ¢, and g," are inverse
clements of G,
N\
Oy
o'
We conclude this chapter by proving the following theqfci’@, which
was discovered by Cayley.y D
Theorem.—Every finile grouwp is isomorphic {0 a»"p?ftain group of
permutuiions, \
Proof —Let G be a finite group, » 1ts orde& :\\”

§ 3. Cayley’s theorem *

iy, Tas ...,({“"}

its elements, and among these let a; be\he null element.
We wrie out the Oleg]\%r%&sdbl'ﬁ&ffbral'y.org.in
@& -+ g, Gy ’%:ai, vy By +a;

for every ¢ =1, 2, 3, . ,\} For fixed ¢ these elements are always
distinet, and there are\fi:Uf them; therefore they are always Just the

. , A
same clements a,, @, . - » Gy, Ut taken in 2 different order, Write

oy + B gy Gy bag =, ey BT 0= Oy
x:\..' )
ThCICQ{f@‘.ﬂlBI‘B corresponds to the element 4 the permutation
N
A

‘P\_— & a, . n ) — (C&l By oo ft.n)
."s.f al_['a'i ag"l‘“" e By T By a'."l a-‘g... a;-”

a \%

) 4 .
Swalso the permutation

pr_ 12... n)
S =1 . .
By by oee bn

which onlv differs from the permutation P; in that in P; 1t 1 the

% The reader who has passed over § 3 of the previous chapter must also pass over
this paragraph.

+ The English mathematician Cayley (1821-1895
the theory of groups.

y was one of the originators of
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elements of the group @ itself which are permuted while in ;" it is the
untquely determined indices of these elements.

Fov i &=k, Le. ¢, = @, we also have P, &= Py; for underneath tle
element e, in the permutation P, there stands the clement ¢y + @, -2
while in the permutation P, there stands a) + @, == a.

We have therefore set up a one-to-one correspondence hetween the
elements ¢, @y, ..., ¢, of the group ¢ and the permutations I,
Py o0 P

We must now prove, firstly that the permutations Py, £, .. 24N

sy NN

with respect to the operation of addition of permutations, Jmn-\.a.

group, and secondly that this group is isomorphic to the grou]{ G
First: of all we observe that:

i

L ¥
.

1. Among the permutations Py, Py, ..., P, there i3, mc?ferrﬂr? the

dentity. m\
Tnidecd since by hypothesis ay is the null elerdeht of the group
it follows that the permutation N

W

p — o 2 N Ga
Y7\ az—i—al,'.a,,—'i—al
is the identical permutation.

Further we prove that’ "It d?gﬁ‘br—ﬂl OUKeH also P, = P, + Py
Firstly we remark that )

74,

aLi ;\ 02 PR 1%
al \k\ak a; —]" ﬂvk PRV / 'I“ 123

and ( ai—l—af R T %—i-% )
al+a‘!+ak a’2+a’-'+a‘k-"an—l_a'i"l—a'n

are two wi %f writing one and the same permutation P Both wavs
show that\to sach element @ of the group & corresponds the element
a + e DF the same group.

”\Thlh we may write

P —( a‘1+a'i ('1'2—!'_0:"&' v a’?a+ai )
=
t

R T R P ol PR ol TR @y 1+ @; -1~ O

From this we see that the permmtation

B ay g Ay
P'x—i_Pk"—(aﬂl—i_ai az—i_a'i"'a'ﬂ—}_a’f)

&, + a; [ P N« PR &y +
&y

tat a2yt . Gyt 8
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according o the gemeral definition of addition of permutations, is
idertical with the permutation

( ay g a,
Gttty Gyta;Fa ... a, + a4, + oy

Bince g, |- a, = a,, we have

( % @ an )=P
4t ta gtetap ... g, a4 a, * 2\
.o, P‘—f-P;b:.P

Oy
This result may be stated in the following terms: e
\ v 4
Ha. To the sum of two elements of the group G correspomfs {fze sum of
the permutations corresponding to these elements, O
A\
From this follows: \V

L. The sum of any two permutations from s@\sed P,P, . .. P,
w8 agein one of the permutations Py, Py, . .. ,'\PW

We consider the permutation P,, tha ‘elément t; and the element
—; = . Since g, 4+, = q, then, by “what we have just proved,
P+ P, = P,;; but as we have geen P is the identical permutation,
and ‘rhetcfme Py = —Pyvn dbr‘aui'bral "y.org.in

23

herefore:
11X, For arbitrary © =~ ”§> ooy, =P 15 one of the permutations
P,P, ..., P,

I‘lom Tih, I apd, T \II it follows that the set of permutations P,
Py ....P,isa gty with respect to the usual definition of addition
of permutatlo 8,

From II‘&it follows that this group is isomorphic to the group &.
Ther vfor \Qﬁy ley’s theorem is proved.

s ) )

o\

\ 3
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EXERCISES 0N CHAPTER III

i. Prove that the group, which consists of tho two elemonts ay and o, with
the addition table

|
| 2 |
i I
‘ ‘ N
, ¢

a | o Loy &\ “\
I | e
\../

is isomorphic to the group of rotations of an interval of a qtrmg{m llm tabout
its mid-point},

2. Prove that all groups of order 2 are isomorphie to ong 'm\e‘rhcr

3. Prove that all groups of order 3 are isomorphic to oge a,nOLh{ r {sce Chapter
1. Ex. 2). .\\,,

4. Prove that every group of order 4 s 1somorph1?\(‘ffher to Kiein's fuur-group
or to the rotation group of & aquare. (Thess tw o graupe arc nob isomorphic to one
another,) e

5. Prove that the group of all positive rmmb(‘rs {with arithmetical multipli-
cation as tho group nperamuw)mauﬂbwmphcatfylérggmup of all real numbers
{with arithmetical addition as the grmq‘)vopur&twn) (The izomorphic mapping ia
get up by taking logarithms.,)

6. If 4 group is 1som0rphle 'to\one of its propor subgroups, what is its order?

7. Find a group of per ﬁt@twns on four numbers which is isomorphie (¢} to
the group of rotations of%a square, and () to Klein’s four-group.

8. Find a group oﬁ Bermutfmons on stx numbers which is isomorphic to the
symmoiric group’\w

\s

’\\,,,

NS

X



Chapter TV

CYCLIC SUBGROUPS OF A GIVEN GROUP . &\
§ 1. The subgroup generated by a given \t\
element of a given group O

N\
G

Let @ be an arbitrary element of a group & We add 1t to itself,
thus forming the clement @ + . This element wes dbmte by Za. It
miust be stressed that 2a is only a way of writing bl element o - o
on 1o account are we speaking here of the mu@phcafsmn by 2 of the
clement . Similarly we denote @ - a |- ¢{by 30, and in general we
IJLIL P v/

a—+a-. +d“£na

1 T,l[ll

www . dhr a:ﬁ'bral y.org.in
Further we consider the eiemen.t"—a and denote In turn

»(\ @)+ (—a) by —2a

(‘&)\r~a+ ﬂ») bY —3a

= )'+’( )+ +(—a) by —na

Thiz n 0&011 is justified by the fact that
NS na + (—na) =0

...\' 7
“Worder to prove this assertion we first of all remark that it is clearly
true in the case n = 1 (this follows from the definition of —a).* We
assume that it is true for n — 1, and prove under this hypothesis that

1t is true for n. We have
na + (—na) = (@ + (n — Da) + [—(r — e + {—a)]
= a4 {(n— Na+ [—(n—Dal} + (=)

* On the understanding that lz =& and —la= —.
35
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But by hypothesis the expression in cwrly brackets is equal to zero,
therefore

ne +(—ne)=a 40 4-{—e)=a+ (—ag) =0

which is what we set out to prove,

We have defined the expression na for arbitrary positive and for
arbitrary negative integral n. Finally we agree to write Oz = 0 {where
0 on the left-hand side denotes the number zero and  on the right-
hand side denotes the null element of the group).

Now let p and ¢ be any $wo whole numbers. From our definitidy ) u
follows that N

\ W

pa +qa = (p |- gla

A\

We obtain the following result: \ v

The set IHa) of the elements of @ group G, which ol f}c, represented in
the form na for integral n, form a group with respebfso the law of addition
defined tn the group G. { \

o/

Indeed we have: ».’;

O

1. The sum of two elentbilts ?)&Tﬁﬁﬁﬁfgﬁ% Medts again an clement
of IT{a).

2. The null element bel@ﬁgs to H{a).
&

3. To every eolement ma of H(e) corresponds an element --ino
which likewise belongs to H{o).

Therefore f{(‘} 18 a subgroup of G. We call this subgroup the
subgroup OJ?Q?& group (f gencrated by the clement a,

§ 2. Finite and infinite cyclic groups

We have defined the gronp H(a) ag the group consisting of all those
elements of ¢ which are representable in the form ma. But we have not
vet considered the following question: Do two expressions me and
mga nvolving different integers m, and s, always give rise to two
different elements of the group G, or can it happen that myo = mee
with ze; and s, distinet?
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We will concern ourselves with this problem now. Suppose there
exist two different whole numbers m; and m, for which mya == m,a.
it we add the element —me to both sides of this last equation tlen
we oblain

0 = (my ~ mi)a
Hence there exists a whole number # such that
me = { N\

Since from ma == 0 it follows that —ma = 0, we may always a&sﬁme
that Lha number m tn the equation is positive. O

Ve now sclect, from among all the natural numbers S&t}éf?lng the
condition e = 0, the smallest one, and denote it by . We have

. \
a0, 2040, ..., (a— a0 =
\.I
We prove that all the elements \‘
0 — 0{}}, a, 2(1, .~, 5 & l)a, (1)

’5

are different from one Q\,noth?ﬁ)ra Hiik?éd if it were true that

rary. Olgln

pa = qa, mfh D{p<<g=<u—1
A

then, i we added —pdtb both sides of the last equation, we should
ohtain the result
..: (g _— }))a f—t 0

A\ \ /
But this W{{fﬂ‘d contrafhct the definition of the number «, since under

our CL)ndq\wns we have

.\

N L —1

~Q\% 0<g—p<u

\["herefore all the elements {1) are different from one another, We
prove that the whole group H(a) is exhausted by the elements (1), so

that therefore for arbitrary integral m we have
me—=rg, with 0<r<z—1

To this end we divide m by « and represent in the form

= qa 47 (@)

(B249)
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where ¢ is the quotient and 7 is the remainder, satisfying the condition *

0 <r<uo
Then we have me = (qu -l ra =qx.a --ra
and since g . a = gloa) =gq.0 =0
also T = 1L

Therefore if there exist two numbers sy and m, such that mya = m.aN
then there exists a natural nmmber « such that the group [(z} ¥

exhausted by the & mutually distinet elements )

O
0, @, 2a, ..., {x— 1 ity

also 2 — 0, and more generally: The whole series 7))
,—HE, ., —@, 08, M

simply consista of infinitely many repemtlons, t{xth(, left and to the
right, of the series (1). Indeed we have: \~

{x + L)a = 2a —l—a W
e + 2)a = ok +~2a =
. \rw\\r'db'r‘auhb't ary.orglin
(2o — 1o = Q—T{cx — la = (o~ l)a

x..,g\Qma =10
(2’35\\4_'"1)& =a, and so on;

and similarly in tholeft halt:

o —e=oe—a=(c— 1l
:"\‘~
N —2a =90 — 20 ={c— 2
~O lx— 1) = 2a — (2 — Lz = a
\ )
— o =10, and soon,

* Fven for negative m the remainder # on division by x > (t is to be taken to be
non-negative. Indoed if m is negative then —m is positive and can be writfen in the
form —m = q.ﬂ x -+ P
where g° and +' are non-negative. For #” > 0 wo have

o= —g e—r = —(¢ L 1}a-d{fe—71)

We apree to call the number — (g -= 1) the quotient and the pasiive number x — 7

<2 7 the remainder when the negative number m is divided by the positive number
# Lor further details see Chapter VII, § 2.
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In order to find the element of the group /{a) which is formed by
the sum
ga+ae¢4+ ...+ a=uma
\u—_—v—._..-._-._J

e times

ar (:a) F(—a) ...+ (—a) = —ma

]

#t times

we must divide m or —m by «. The non-negative remainder r whichewe
obtain after this division satisfies the condition 0 <<z <{a — Nand
gives O\

ma = ra O

Ny

From this it is also clear how the elements of the group yfa) are to be

added together; indeed S
po 4 g0 = (p + g)a = Y
where ¢ i3 the remainder when ¢ - ¢ is divi@éd by e
We consider now a regular pnlygon,’o}oc sides. The angle at the
centre subtended by a side of the polggeh is equal to

g =D /u

. v dbraulibrary orgin,, :
The polygon is bro\l'\{g@t,mgg ‘comeldencs With itself by rotations

through angles (t {the idemtical or zero rotation), @, 2¢, .. ., (x — L)p.
If we identify rotationsJuliich only differ from one another by a whole
number of complet fevolutions, then these multiples of p represent the
only rotations bringing the polygon into coincidence with ifself. The
sum of the rottions throngh the angles pg and gy is evidently equal
to the rotaKiQ,n through the angle rg, where ¢ is the remainder when
P + g ispdivided by «.
Wesed that: If we associate with the elemant ma of the group H(a)
thesfpbation of the polygon through the angle mep, then we obtain an
. igoritorphic mapping of the group H{a) onto the group of rotations of
\_the regular x-sided polygon.
Groups which are isomorphic to groups of rolations of reqular polygons
are ealled finite cyclic groups.™®
Tf therefore m,a = myo for certain my and m, then the group Hi{a)
is a finite cyclic group.
The addition tables of cyclic groups of orders 3 and 4 were wittten

* We regard an interval of a straight line as a pulygon with two sides and two
vertices (sce also Chapter V, § 3, section 8). The group ronsisting of the null element O
alone is included as a trivial eyclic group of order 1 gencrated by 0.
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down in Chapter [, § 1 {first and third examples). The addition table of a
cyclic group of order « has the form:

'™ ! &y [ 23 P L
i
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We can interpret this adc}i\t}o\n table as a second definition of a cyclic
group of order «. \\'

We have in\fp{ﬁi:gﬁted the case that for a given element a of the
group ( there.éxist two different whole numbers my; and m, with the
Property thatw,e = maa.

We p@sﬁicr now the case that no two such numbers exist, 0 that
thereforg all the elements

NS

AN e, —(m— 1)a, ..., —3a, —2a,
—a, 0, a, 20, 30, ..., Wma, ... (3}

are distinet, In this case there is a one-te-one correspondence between
the elements (3} and the whole numbers: To the clement ma corres-
ponds the whole number m, and conversely, And with

Wyl - gl = Mga
we also have

1 u—
My g == my
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This one-to-one correspondence is therefore an isomorphism between
the subgroup H(a) and the group of all whole numbers.

Groups which are isomorphic to the group of all whole numbers are
called infindte cyclic groups.

Further, since two groups 4 and B which are isomorphic to one and
the same group €' are evidently isomorphic fo cach other, it follows that
all infinite cyclic groups gre isomorphic to one another. Likewise all
finite eyclic groups of the same order are isomorphic to one another,

We summarize the results of this paragraph.

Theorem.—~Every clement o of @ group G generates a finite or ghfwite
eyehie group (a). The order of the group H{a) is called the ofdar of the
elewnent a. 4 ‘.‘}‘ ]

Finally we may also define finite or infinite cyelic gt:opi)s as follows:
A group is ealled eyclic if it is generated by one of its elowents.

P~
§3. Systems of genefators

We now turn back to the eyclic gzpiqi H{e) which is gencrated by
the element @ of the group G. The eleihent @ generates the group H(a)
in the sense that every one gf thy; ZEW%}.SE%H {@) 13 a sum of terms
cach of which is either equal tosg’or to ™ —a.

The statement that <#hés element @ gencrates the group /f(a)”
i equivalent to the stdtément that ** the clement a is a generating
element of the group Hlay 7.

However not g¥eby group is cyelic, i.c. not every group is generated
by u single element. Non-cyclic groups are generated not by one bub
by many, sofgtimes by infinitely many, elements. The concept of 2
genemtin{“ﬁlémcnt leads to the concept of @ system of generators.

Defitiivion.—A set E of elements of a group G is colled a sysiem of

generdtors of this group if every dlement of the group is the sum of u finte
w&n]}ef of terms, each of which 1s either an element of E or is the inverse
\}f&% element of B.*

Ezample—We consider the plane with a Cartesian system chosen
in it, and denote by & the set of points ¥ = (z, y) whose two co-
ordinates  and y are whole numbers. We lay down the following rale
of addition for points: The sum of the two points P, = (), %)
and P, = (i, 1) is the point Py == (z3 y;) with the coordinates
T, =, + ay and y; = 9 + ¥ We see at once that with addition so

* Bvidently the sot of all the clements of any group is a {trivial} ayvstem of pener-
ators of this group, Therefure every group possesses o system of generabors.
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defined the set @ is an Abelian group (see Chapter I, § 2, IV), and that
the points (0, 1) and (1, 0) form a system of generators of this group.

FRemark—If the reader Is familiar with the concept of a complex
number, then he can easily show that the group just constructed is
isomorphic to the group of complex numbers x +— sy with integral
real and imaginary parts » and y (with addition as the group operalion).

N
FXERCISES ON CHATTER 1V
L\
. Tind the eyclic subgroups of the symmetric group ;. \ -

2. Show that an infinite cyclie group has an unlimited number ot infinite
cyeclic subgroups, and that each of these subgroups is wumorphm £5%he original
group. /\ O

3. Cananinfinite eyvelic group have a finite suhgmup 2 (Qee Ex. 4 of Chapter 1.}

4, Show that all subgroups of & cyclic group are themhgelves cyelie, and hence
in particular that an infinite cyelic group is isomorphieto cach of its subgroups.

¥
5. Prove that a evclic group of order m wlt}\the clements O, @, 2o, ... .
e — lju is generated by the element ra plonded that the greatest cominan
divisor {(g. c. 4.} of m and r s equal to L ,(J’_n particular a cyelic group of prime
order is generated by any one of its elc m(‘nts )]
3
)

6. Prove that 8, is gener&tbd«’l&bfﬁﬁltmpgrmcgamwns (1 2 3), (1)‘
7. Prove that every aetoéf atural numbers whose g, c. d. is equal to 1 i= a

213
123 123 ~n
but not by (2 3 1) (3 1 2) 2\
“\
gyslom of generatory of tlﬁ\ roup of all whole numbers.

| B 8-

N W



Chapter V
SIMPLE GROUPS OF MOVEMENTS

§ 1. Examples and definition of congruence groups \:\
of geometrical figures O

s
S D

1, Congroences of regular polygons in their planes 9

2

A large and very important class of groups, whi(;h)sr\nnprises both
finite and infinite groups, is formed by the  copgrtince groups ™ of
geometrical figures. By a congruence of a givedhgtometrical figure F
we understand a movement of # (in spacé Or in the plane) which
transforms F into itself, that is to saj v A
which brings the figure  into coincidenc®” ;
with itself. W bradlgiéll "r org.iy

We have already made . :énrselatlr o8
familiar with some simple tongruence
groups, namely with the, "groups of g
rotations of regular G\}ygons. Consider
the regular polygon i;—ll ... A, in the
plane (fig. 2), for\example the regular
octagon AgA, ADNGA, A AGA, (the vertices
are all 11111@1)@%%1 in order, for example in
the counbeéfadluckwisc sense).

Wedeok for those movements of the Fig. 2
polygon in its own plane which bring if
{ito-toincidence with itself. In these movements every vertex of the
}olygon must go over into & vertex, every side into a side, and the
centroid O of the polygon must go over wnto itself. Tn a certain
movement the vertex A, may for example go over into the vertex
A, {in the figure, k = 4).

Then the side A A, must either go over into the side A A, or
into the side Az A, . Suppose Ajd, went over into A A, then also
the triangle A,4,0 would go into triangle A;A4,,0. Now by a move-
ment within its own plane, this triangle could be brought inte the

43
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position of AyA, 0, which is constructed by reflecting the triangle
A A0 in its side AgA;. This would prove that the triangle A;A,0
could be transformed by & movement within its own plane into ins
reflection, and this is impossible.*

Therefore the side A A; must go over into the side A, A In
the same way we convince ourselves that the side A A, ninst g0 over
into Ay_1AL_,, the side A 4, Into Ap AL, and so on. Tn other words,
the movement is a rotation of the polygon in its own plane und theongh

an angle & . 2z/n. Therefore Q)
Every congruence of a reqular n-gon n its own plane @8 ¢ rolalige bf
the polygon through an angle k. 2 /n, where k 45 a whole numberd \))
There are thercfore # such congruences. . O
As we know, these rotations form a group. N

2. Congruences of a regular polygon in three-dimensional ,sp%t:?e

We have carried through the foregoing invegieations under the
important assumption that only congruences ,Qﬁa:‘polygon In itg own
planc were to be considered. If we investigattcongrueoces ol an n-gon
in apace, then as well ag the above rotanien};'ﬁhere arc also to be added
the * reversals ” of the polygon; thege are the rotations through an
angle = about the axes Qﬁ\ﬁ%ﬁ%&ﬁ%@%?ﬁlﬁgon' A regular »ogon
possesses n axes of symmetry. Faryi'even, the axes of symmetry are the
/2 lines joining the pairs of oppokite vertices and the #/2 lines joining
the mid-points of the oppogite sides. For » 0dd, the axes of symmetey
are formed by the line @@h of which joins a vertex to the mid-poiab
of the side of the polyzon lying opposite this vertex. The proof that
these » rotationg and reversals of a regular n-gon constitute all the
congruences of tle#-gon, i.c. all the movements in space which bring
the polygon i o coineidence with itself, is essentiall y contained in the
investigattens'in § 3 of this chapter. For the better understanding of
this papaﬁjr\aph it may be left to the reader to turn back to 1t again later,
in opdet to consider onee more all the questions connected with the
c{”ﬁgruenccs of a regular polygon.

3. General definition of the congruence group of a given figurc in space or in
the plane
Suppose a figure ¥ is given in space or in the plane. We consider
the set of all congruences of this figure, i.e. all movements in space ot
in the plane which bring this figure into coincidence with itself.

* A rigoraus proof of thiz impossibility, which ia one of the basle {acts in the
geometry of the plune, would go beyond the scope of Lthis book.
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We define the sum g, -} g, of two congruences g, and g, to be the
movement which consists of the suceessive application of the move-
ments g; and g, in this order, Evidently, under the assumption that
¢, and g, are congruences of the figure ¥, so alao is g, - go. The set of
all congruences of the figure F forms a group with respect to the above
definition of the operation of addition, Indeed addition of movements
satisfics the asgociative law. Furthermore, among the set of all con-
gruences there is a null or “ identical ” congruence, namely that one
which keeps every point of the figure fixed. Finally there correspongs
to every congruence ¢ the congrience —g inverse to it (it sends evely
point back to its original position from the new position whieh it is
occupying after the movement g), "\

L &

ad
77%Na
S

§2. The congruence groups of a lifey
a circle, and a plane X

The congruence groups of regular polygp@‘am finite. Woe shall
hecome acquainted with other finite congruenée groups in this cliapter,
namely the congruence groups of certaimzpolyhedra. But first of all we
give some oxamples of infinite congruenee groups,

The group of congruences of a S{tl:éii‘ght line in any plane containing
it [orms the first cxamﬁlgwﬁggﬁb%'é&ﬁ&é%f displacements of the
line along itself (congruences of the first kind) and of rotations of the
line through s radians in ghéselected plane and about any one of the
points of che line (congfuences of the second kind).

The congruence granp of ¢ line is non-commutaiive.—In order to
convinee ourselvegofthis it is sufficient to add together two congruences,
one of the firsthdnd and the other of the second kind. The result of this
addition is ehwnged if we change the order in which the terms are
added.* Ji¥idently we can obtain all the congruences of the second kind
if we ad@to each possible displacement of the line an arbitrary rolation
throgeh '~ radians, that is to say a rotation through = radians about
Jarfe particular, but arbitrarily chosen, point of the line.

. The displacements of the line along itself form a subgroup of the
group of all congruences of the line. These displacements are the only
movements of the line inside itself. Now therc corresponds in a unique
way to each displacement of the line along itself a real number, which
specifies the length and direction of the displacement. From this fact

* It iy laft to the reader to verify this by forming the sum of two arbitrary but
definito congruences one of each ldnd, taking the terms in each of the two possible
orders.
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we easily conclude that the group of all displaceinents of a line along
itsell is isomorphic to the group of real numibers {where the group
operation 18 ordinary arithmetical addition),

As a second example we consider the group of all congrences of a
circle in its own plane. This group consists of all possible rolationsz
of the circle in its planc about its centre, where as usual we regard
as the identity any rotation which is an integral multiple * of 27.

To every clement of our group there corresponds in this war a
delinite angle, Let the radian measnre of this angle be ». Now
since angles differing from one another by an integral nndiiple 68
27 define one and the same rotation of the circle, it follows tizar,:%;o
each element of the rotation group of the eirvele there correspddifs nuy
a single number « but the set of all numbers of the foraly - Sk,
where [ is ap arbitrary integer. ) “\ ’

On the other hand, to cvery real number ® thqm}cbrrespomls a
unique rotation of the circle, namely the rotationNth¥dugh the ancle
whose radian measure is . Thercfore hetween thdzotations of a circle
and the real numbers we can set up the fol]g\ﬁﬁg corrospondence

To every veal wwumber © there corresypitds o wniquely determined
rolation, namely the rotation through the angle m. But conversely cvery
rolation corresponds lo, noi wg'usf. oie, Duf nfinitely many real niwmbers
differing from each other by a.ﬁ?%&'-?&g?é%&ﬁé&%i@?s°&jgin.

The group of rotations of a dircle is denoted by the Greek letter «
{" kappa ”’), from the word KR%os {eyelos) which weans a circle.

As a third example we ¢hpbse to consider the group of all mavements
of @ plane in itself. Mofedver in this connection we consider not one
bt two planes, of Whl:uh the first is fixed while 1he sceond one can he
moved about, or MbIé accurately can slide about, on the first one, We
can picture thesfiret fixed plane as a table with all its sides extended
infinitely fan while the sccond sliding plane can be thonght of as a
sheet of glésslying on the table, and likewise with all its sides infinjtely
extent;l&}%ﬁz We arc therefore thinking of the totality of possible move-
:men&fsﬁaf the sheet which keep it always in contact with the tablef

\Ia the gronp of all movements of a plane in itself thore are infinitely
many subgroups. Of these we mention first the infinitely many roba-
tion groups: The set of all rotations of the plane about an arbitrary,

*If the meaning of the following invostigations Is not readily intellioible to the
ceader he can pass straight on to the pext example and veturn to this one after reading
Chapter VIIL

T [n particular therefore a rotation of the sheet about an axis lying wholly on the
table is not allowed.
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Imt definite, point of the plane forms a group, and we easily recognize
that this group is isomorphic to the group «. [t follows in particular
that each of these groups is commutative. In the group of all raove-
ments ol the plane in ibself, as well ug the rotation groups, there are the
subgroups of parallel displacements along different lines: Given a
line g we can displace the planc along this line, and the line g and every
line parallel to it will evidently be transformed into itself, There are
iwo mutually opposite directions possible for these displacements alony
the line g. The set of all such displacements forms a group, the group fy° N
o‘npfarmnems or purallel-displacements of the plane along a given lind
it iz evidently a subgroup of the group of all movements of the plane\m
1kself, O

Jivery displacement along a line g is characterized by the magmtude
and direction of a cerfain vector ~

which lies along the line g and issues - ;0‘ >
{rom a selected (fixed once and for all) PR, g
point O of this line (fig. 3). In onr dis- A Fie s

placement the point O moves to the end ’m\ of the vector . Tt
follows from all this that the group of elNdisplacements of the plane
wlong @ given lne g 4s tsomorphic Lo the grawp of all real mumbers (with
ordinary addition as the group operation}.

We consider two dﬂ}}iycé&mﬁsbval ¥.org.in
and # of the plane along twd non-

parailel lines * g and g” (fig. 4 v

The resultant of theses two dis- v
placements is equivalent™to the dis- /O v’
placement of the Mplane along the

diagonal of the, ar&ﬁelog_m,m formed Fig. 4

by v and o (“ parallelogram rule ” for addition of vectors). ‘ '

Thercforothé sum of any two displacements of the plane ts again a
fgf‘\pftwr’?? n0f the plane. Tt does not depend on the order of the terms in
the sumd ?mm this i follows that the set of all displacements of the plane
alfmqwli possible lines is a commutative subgroup of the group of move-
i{em‘s of the plane tn itself. ) '

The last two groups which we have just considered, namely t-]?e
groups of movements of a circle and of a plane, have the Following_" in
common; These groups consist of movements of the corresponding
forms nside themselves. In other words, throughout each movement

* Two displacoments along two parallel lines are obviously equivalent to dis-
Placements along one line (namcly along cither of the two given lines or just as well
along any third line which is parallel to the given ones)



48 V. Simple Groups of Movements

the form considered, the circle or the plane, remains in coincidence
with 1tself. This property is no longer possessed by the congruences of
regular polygons. Indeed for thewm the final and initial positions of
the moving figure coineide, but the intermediate positions which the
figure takes in the course of ity movement differ from its initial and
final positions. The same is true also of the movements of poly-
tiedra to which we turn directly.

§ 3. The rotation groups of a regular pyramid Q4
and of a double pyramid A
1. The pyramid O .

The group of rotations about {\xis of a
regular pyramid whose base is an‘#Xon (fie. 3) is
evidently 1somorphic to the ghQip of rctalions in
its plane of a regular n-gon \This group is there-
fore eyclic of order n. Wefenastly convince ourselves
that the rotations of\dhes pyramid aboub its axis
[through angles of @ ¥ n, ..., (n — 1)2z/5] axe
the only movements which brmcr the pyranud into

Fig. Gommmldbmqﬂbrm@fo@cg;my rate when » 7= 3).

2. The double'pyramid

We\now define the congruence group of a
b XWhlGh is called a * regular #-pointed double
dyramid 7 {ig. 6).

" This body consists of a regular pyramid whose
base is an n-gon and ibs mirror image in 1ts base.
We shall prove that the congruence group of the
dotible pyramid consists of the following elements:

1. The rotations about the axis of the pyramid
(throngh angles of 0, 27/n, .. ., (n — 1)2x/n).

2. The so-called reversals, that is to say the
rotations through z abont each of the axes of
gymmetry of the bage of the double pyramid, i.e.
of the regular polygon which both the pyramids
forming the double pyramid have as their common
bage. As we have seen there are n such axes of
gymmetry and therefore n reversals.

The number of all these movements is there-
fore equal to 2n. In order to convince cursclves
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that, cxeept in the case n = 4, there are no other movements which
bring the n-pointed double pyramid into coincidence with itself, we
first obscrve that for n = 4 every congruence of the double pyramid
must either keep the points 8 and & fixed (congruences of the first
kind) or must interchange them (congruences of the second hind).
Torther, in any congruence the base of the double pyramid mnst go
over into itself, Fmally we remark that the addition of {that is to
say, the successive application of) two congriences of the first kind
Is again a congrunence of the first kind, the addition of a congruenges
of the first kind to a congruence of the second kind is a congrugnee
of the second kind, and the addition of two congruences of the gocond
kind is a congruence of the first kind. O

In this connection, the sum of two congruences, of w]’giﬁh one is of
the first kind and the other of the second kind, dependshon the order
in which the terms are added. Indeed ifaisa congru}ﬁce of the first
kind snd 4 a congruence of the second kind then a6 = b — a.

We consider first of all congrnences of thgfisst kind, These con-
gruences do not overturn the base, that is&d*say the base docs not
move out of its own plane. It can therefore only be subject to a
rotation through one of the angles

0, "t brahilrecy prErin

Each of these movementgis therefore a rotation through one of these
angles, about the axis of ph@xdouble pyramid.

There are thercfért, éxactly # congruences of the first kind
{including the ideptity). These congruences are none other than
the rotations of &h¢ double pyramid through angles 0, 2a/n, ...,
{n — 1)27n aboilt its axis. ‘

Supposeghven an arbitrary but fixed congruence of the second kind,
that is towsdy a congruence of the double pyramid which interchanges
the ppiﬁt-s S and 8.

.. Ifwe apply, after this congruence of the second kind, an arbitrary
Sout fixed reversal of the double pyramid, that is to say, a movement
which congists of a rotation of the double pyramid through the angle
7 about an arbitrarily chosen axis of symmetry of the base, then we
obtain a congruence of the first kind,* and therefore a rotation of
the donble pyramid about its axis.

Henoe every congruence of the second kind added to a fixed reversal

* Indeed every one of theso reversals is a eongruence of the serond k1r_1d, and the
sum of two congruences of the second kind ia & congrience of the first kind,



50 V. Simple Groups of Movements

results in a congruence of the first kind. From this it follows that:
Tvery congruence of the scecond kind consists of a snitable congruence
of the first kind following or followed by an arbitrartly chosen bug
fixed reversal, It follows further that the nwmber of congmences of
the first kind is equal to the nnwmber of congruences of the secowd kind,
and therefore evidently this number is equal to ».

On the oiher hand it is clear that all reversals are congruences of
the second kind. Since there are exactly » such reversals they evidently
comprise all the congruences of the second kind. §

Hence for # 4= 4 we have established the followiny: 7%
grucice group of an n-pointed double pyramid is o -?wu-—f-w,mzr.?\ i
group of order 2n* which consists of n rolutions aboud the qris 88" of the
double pyramid and of n reversals, thot is lo say, rolatighs Wrough an
angle 7 about the awes of symmelry of the base of theldedle jiy-amid.
We obtain all the n reversals by adding a singlesode/of thewe iv the n
rotations of the double pyramid about its axis 33

Further, since we obtain all the rotatio 1;~’szaf the deuble yvranud
about its axis by repeated addition of asdipgle one of these rotations,
namely the rotation through the angle’2s'n, thercfore the group of
all congraences possesses a system of.génerators which consists of two
elements: of the rotatici KA HAAREY A2y, and of an whitrary
reversal. N\

The case n = 4 I an exCéption, in that a special case of a fonr-
pointed double pyralnidg'i&\a.n octabedron, and this possesses, as we
shall see below, not Blbut 24 congruences. This is becanse in the
regular octahedron &% can interchange the vertex S not only with the
vertex &' but aledlwith each of the vertices of the base, One ol the
necessary condipions for this to be allowahble, namely that to cach ver-
tex there K@j‘}éSponds the same number of faces and edges, is evidently
a]ready,,s'am fied for an arbitrary 4-pointed double pyramid. Moreover,
for a.fegular octahedron, the angles in the faces and also the angles
betjvﬁen the faces corresponding to any two arbitrary vertices are
Suutal, and therefore the adjacent faces and edges are congruent.

7N {G -
e

3, Degencrate cases: The rotation groups of an interval and of a rhombus
The smallest number of vertices which a polygon can have is three.
However, as is well known, we can regard an interval of a straight line
as a ‘“ degeneratc ” polygon or as a  polygon with 2 vertices . This
is also justified in particnlar by the fact that the congrnence gronp of

* It is called the dihedral group of ordec 2n.
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art wterval in any plane containing it is a cyelic group of order 2,
t apparently consists of the identical congruence and the rotation
of the interval through an angle = about its mid-point,

Similarly an isosceles triangle can be regarded as a degenerate case
of a regular pyramid: The congruence group of an isosceles triangle in
gvace is a group of order 2,

Furthermore a degenerate double pyramid is evidently a rhombus.
"The group of congruences or rotations of & rhombus in space consists of
[erar eloments: The identical transformation g, the rotations a, ands
t; through an angle = ahout the diagonals, and the rotation a, in its
plane throngh an angle = about its centroid; this is the sum of the

rotations e, and ¢,.* The addition table of our group takes the fallowing
Tormn : N
¢ ¢ ?
thy @ ! ay ‘ @ -\
|
ty oy & ‘ Gy g \\f
SR I -—J&&
7, tty gy | AN
- :';_, .
ity ty iy SN @
¥ - 1 ». L5 L 1
Www.dbt Efll'l‘l rary.org.in
2 as NG i ty
" _ |
RA
+8 3

which iz therefore identidal with the addition table of Klein’s four-
group, considered ag the second example in Chapter T, § 1, section 3.
We casily convinge ourselves of this divectly, or alternatively by
considering in staad of the rotation group of the rhombus the .isomorph ic
group of pe{rﬁtf%ations af its four vertices A, B, (, D. E\«']Idently the
rotations'@) @, o, @& correspond to the following permutations of the

x'ertiqgs;‘f‘
) /ABCD\ /ABCD ABCD) (ABCD)
(ABOD) sacp) aspe) \sapc

* Tf we regard ona of the diagonals of the rhombas as the © baseline * and the other
as the axis of the corresponding degenerate double pyramid, then we may interpret
these four congruences as rotations about the wxis and reversals, as in the non-degen-
crate Crso. i

# We denote by a4, the rotation about the diagonal CD. and by a, that about the
diagonal AL,
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§ 4. The rotation group of a tetrahedron *

in order to determine all the congruences of the teivabedeon
A ALAL (fig. T) we fipst of all consider those which keep one particular
vertex fixed, say A, These congrrences then cary the teiangle
AAGAS into ifself by rotating it about its centroid B through the
angles 0, 273, 4x/3. Frow this it [ollows that
there are exactly three congriences of the tefra-
hedron A A ALA, which keep the verisk i\}
fixed: the identical congruence n, whichckeeps
every clement of the tetrahedron fixedpand/ the
two rotations ¢; and a, through the winles 2273
2 and 473 respectively about the a%is ¥, B, We
" now denote by x; any particafafcougmence of
the tetrahedron which cardeswhe vertex A into
the vertex A, (i =1, 2,40 By =, we deunote
again the identical cr{fg}uenee.
We prove that every congrience b of € detrabedron can be written
in the form \

Fig. 7

b =a; ¥ (1}

where 1 =0, 1, 2 and &’ ;iWG?ki:?g}.lgraﬁf%‘%ﬁiH{lely determined by b
(This last assertion means thataif b =g, - - Te b =) -y, and if
at least one of the inequal'\ties fo 4, B b ig trae, then b =10")
Let us therefore suppdsd given any congrmence 4. It carties over the
vertex Ay intoa certai;ﬁquely determined vertex A, where b = 0. 1,
2, 3. But then the dohgruence b — z, leaves the vertex A, fixed and it
is therefore eqimbto a uniquely determined a;, so that we have
b — x, = a,, thatls b = a, + x;; heresaud k are uniquely determined.
Since also\éit;)\rﬁ-*ersely to every pair (¢, &) there corvesponds by {1} a
partimﬂgﬁ'\congruence of the tetrahedron, there iz a one-to-one corres-
pongene between the set of all congruences of the tetrahedron and all
iirs4i, k) where ¢ takes the values 0, 1, 2 and % the values 0, 1, 2, 3.
%) follows from this that therc are exactly 12 congruences of the
tetrahedron. Now every congruencs of the tetrahedron gives rise to a
certain permutation of the vertices, and therefore to a certain permut-

ation of the corresponding numbers 0, 1, 2, 3. But now there are 24

3
* By a tetrahedron we undersiand here and always in what follows a reguler
tetrabedron,

t The vertex A, can be mapped into A, and A, for cxample by rotations aboutb
the axiz A, B, (which jeina A, to the controid of the opposite face). A, goes over info
Ay, for example by a rotation about the axiz A, B,
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permntations of four elements, and of these, as we have just seen, only
12 can be associsted with movements of the tetrahedron in space. We
will investigate which of these movements correspond to which per-
mutations,

For the sake of brevity we refer to any line joining a vertex A, of
the tetrahedron to the centroid of the face lying opposite A, as a
medign. We use the word edge-bisector to describe any line which joins
the midpoints of two opposite edges of the tetrahedron.

To cvery median there correspond two congruences of the tebra-
hedron other than the identity, namely the rotations through angles
of 27{3 and 4z/3 about the median. Altogether therefore wd dhtain
eight rotations which we can represent in the following Way ' as per-
mutations of the suffixes of the vertices: |\

_

/0123 (0173 _ (o123 ¢ Jo123
“T o281, T \os12) BT \2130) % T (3102

o — (0123 _ {n123 _ 01.2’;-_,\' _ {0123
s =\1320/ ®7\3021/ @ =igwes/ %~ lao1s

About cacl edge-bisector there §s\d rotation through the angle s,
which 15 different frt)mwt"hcdhi@ﬂﬁb?ﬁ%ndl giioe there are three edge-
bisectors this results in anotbm.rhlee rotations; they can be written
as permutations i the foUmung way'!

01 0123 0123
“‘9“( ‘3) :(2301> “11:(3210) )

These cleven{ ro%atlons fogether with the ilentical congruence {** iden-
tical rotdt@a\ yield just the twelve congrucnces of the tetrahedron.
Tivery onavof Lhem is a rotation about one ol’the seven axes of symme-
try * Of the tetrabedron. Therefore the group of these congruences is
El.lHQ ealled the rotation growp of the teirahedron.

\ “Wo easily verify that all the permutations (2) and (3) are even.
But since theve are altogether twelve even permutations on four
elements, in this case the vertices of the tetrahedron, we evidently

A

* These seven axes of aymmetry congist of the four medians and the three edge-
bissetors of the tetrabedron. More generally we mean by an axis of aymmetry of a
geometrieal figure any line about which the figure can bo rotated through an anglo
dilferent from zero, so as to be carriced into coincidence with itself. In this connection
we remark that every movement of a rigid body in space leaving a cortain point O
fixed is a rotation of this rigid body about a certain axis passing through the point O.

5 {249}
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have a one-to-one and indeed an isomorphic eorrespondeiice Letwven the
rotation group of the tetrahedron and the alternating grouss of pervisiotivas
on four clements.

We wish now to investigate what subgroups are possessed by the
rotation group of the tetrahedron.

In this rotation group, as in every group, there are the two fuproper
subgroups: firstly the whole group itself, and secondly the subaroup
which consists only of the null element. Let us coneern ourselves with
the remaining subgroups, the proper subgroups of the rotation gron), of
the tetrabhedron. There are emct,lv eight of these.

First of all we remark that the sum of the rotations thro «vh}ho
angle m about two different edge-bisectors is a rotation tifoleh =
about the thivd edge-bisector; this can Do verified geometsicaily, but
also by adding together any two of the perniutations (BFykrom this it
follows that the rotations thlouﬁh the angle = a‘r)ou‘l?\bho throe edge-
bisectors together with the identical rotation fortaM group of order
four. It is isomorphic te Klein®s fony-group auobt rerclore also to the
group of rotations of the rhombus. We d&note‘ﬂltq group by . Amoeng
all the subgroups of the rotation group of’the’tetrahedron this oue has
the highest order. It contains three ghbgroups of the second order,
cach of which consists of Mtwﬁh@m@? whgles of 0 and = about one
of the given edge-bizectors, Weletlote these subgroups by {1y,
H . Besides those named thcre dre four move subgroups which are of
order 3, namely the groug:;-“\

)

‘ \\fli (i =0,1,2,3)

each of which consmta of three rotations throngh angles of 0, 273,
4x/3 about ozw BT the medians.

In ord v6 prove that in the rofation group of the tetrahedron
there aré 'mo other subgroups, it is sufficient to show that any two
elements different, from the nmil element, which ave taken either from

o ifferent groups H,, or one of which is taken from a group H,
a‘;&t the other from a group H,;, form a system of generators for the
whole rotation group of the tetrahedron. To achieve this it 1s again
sufficient to consider any two of the elements a,, @, 4., ay, say ¢, and
a5, or onc of the elements ay, 45, a5, 2, and one of the elements ag, ¢,

We leave it to the reader to carry through the georstrical proof,
and therefore to show thab every rotation of the tetrahedron can be
gencrated by any one of the pairs of rotations mentioned. We can
establish the same result also by calenlation. The following identities
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show that for example the elements @, and a, form a system of generators
of the rotation group of the tetrahedron:

Gy = @y — @& a; =a; +ay —

a4y = 20, ag = 2a, - a,

tfy == 2(3:3 thy = —fy + a, + 2633

U5 = =03 — & + g = @ 1 a3

Gy = —y - 2ay 1 @y ay = 03 + & N\

Q

It must not be su pposed that every element can be repregented in
terms of the generators in a unigue way. Thus we have \/

a; =y + thy —

a AN
and at the same time \/
By =% —G3 — &y + 5 + “1%'“3

The rotation group of the tetrahedron is non‘commumzwe thus

‘,o

a + a‘S &=y
wiww . d b au“lﬂal ary.org.in

while @y :b B = &

§ & The rotation group of 2 cube

;" and of an octahedron *

%
w

In order %0 obtain all the congruences of a . ,
cube we proceed just as for the tetrahedron,
We em,ﬁlder first of all only thogse congruences A
({fﬁc cube ABCDA'B'C'D (fig. &8} which carry s
ope vertex, say A, over info itself, ANV AN

In cach congruence of a cube, vertices go R\ VI
over into vertices, edges into edges, and faces A -
into faces; also the diagonals of the cube go over D
into each other. A given congruence which

¥ Just as in the case of the tetrahedron we always understand by the word
“ gotahedron © & regular notahedron,



56 V. Simple Groups of Movements

leaves the vertex A fixed leaves also the diagonal AC fixed sinee there
exists only one diagonal of the eube passing through A, Therefure this
congruence 18 a rotation of the cube about the dingonal AT Phere
are just two such rotations different [rom the identity, namely those
through angles of 23 and 4=/3.

There are therefore altofrethe three congruences of the wibe which
carry the vertex A over into itsell. We can find the corresponding
rotations for all eight vertices of the cube exactly as for the veriex
A. If we argue as in the case of the tetrahedron then we easily decuge
that altogether there are 8 ) 8 = 24 congruences of the cube,

We will investigate these cangruences more closely, Hirver oft&llyee
remark that a cube has 13 axes of symmetry: the four dla,{m ials of
the body, the three lines, cach of which joins the centroidg e & puir of
opposite faces, and the six lines cach of which joins, fHp"mid points
of a pair of opposite edges of the cube. About cach of t”b}fom dinronals
there are two rotations of the cube different romthe identity, which
carry the cube over into itself. Altogether the%f'ore there are cight
rotations about the diagonals, ~\

About each of the hines joinmng the caltti6ids of a pair of opposite
faces there are three rotations differenfifrom the identity, and hence
altocether nive such IO’Ca{a.l&l%;dbrauhbrary org.in

Final Iy there is a rotation diﬁ'frent from the identity through =
about cach line joining the mld points of a pair of opposite e lacs,
and therefore altogether blx\uch rotations.

Thus we hcnc 8 \9 - 6 == 23 rotations, different from the
identity, carrying thexcube over into ilself. If to them we add further
the identical mtatmm then we obtain 24 congruences, and therelore afl
the posable co ruence% of the cube.

Therefore-all the congruences of the cube consist of rotations about its
axes of syrr%set

Hence just as for the tetrahedron, we usually speak of the group of
cowgrmnoos of the cube as the rotation group of the cube.

Before we go on to consider the structure of the rotation group we
prove the following lemma:

Lemma.—The only rolation of the cube which carries over each of the
Jour diagonals into iself 13 the identical votation.®

We remark first that any rotation which carries over into themselves

* The following remark should be noted carvelully: If a given diagomal, say AL,
gocs over inte itsolf by a given rotation then this does not imply that the vertices
joined by this diagonal {in our case the vertices A and ) necessarily romain fixed.
They rmay bo interchanged, that is to say, A may go inte C7 and ¢ inbo A.
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any two disgonals of the cube, say AC” and DB’, also carries over into
itself the diagopal plane ADC'B’ (fig. 8). Now every rotation other
than the jdentity which carries a certain plane over into itself has as
axis cither a line lying in this planc—in which case the angle of rotation
is equal to z—or a lme perpendicular to this plane. But now a rotation
of the plane through an angle = about an axis lying in the plane
carries over into themselves only those lines of the plane which are
perpendicular to the axis, except for the axix itself. Sinee the quadri-
lateral ADCYB’ js not a square its diagonals, since they are not at right
angles to each other, cannot both go over into themsclves b} any
rotation of the cube about an axis lymcr in the plane of the duadri-
lateral. Therefore ACY and DB’ can only go over into them‘zelve% by a
rotation of the cube about an axis perpendicular to the pla’ne ADCL.
Thiz axis 18 the line MN joining the mid-points of the 51deb A'D" and
B The only rotation of the eube about the ling 115{, different from
the identity, is the rotation through the angle 7w\ Thercfore this is the
only rotation which carries over into itseif each of the diagonals AC
and DB’. However, the other two diagonals BD' and CA” are inter-
changed by this rotation, and so there Cle‘t% no rotation other than the
identity which carnes over into thpmsgﬂhes all the four diagonals.

Therefore every rotation of thelnbe different from the identity
subjects the four dmgonal’cs 3 ?}%tﬁbfﬁéﬁti’é?ﬁ Hermutation. From this
it follows that in two differenfiPotations @ and b the diagonals also
undergo different permutaions, Indeed if two rotations a and &
reaulted in the same peljm'lﬁm-tion of the diagonals, then in the rotation
¢ — b all the diagonals would remain fixed, and therefore ¢ — b would
be the ideutical rogation, so that ¢ and & would coincide.

Thus there p«drréspond to the 24 distinet rotations of the cube
distinet pernmitations of the diagonals which are produced by these
rotations, ("Bt it iz well known that there are 1.2.3.4 =24
pe.rmufc;b}bﬁs of four clements,

Erom' this it follows that there exists a one-to-one correspondence
beﬁv.%en the group of all rotations of the cube and the gronp of all

’ permutatmns of its four diagonals. Sinee in our (,orreqpondctm
addition of rotations COITLbPOIl(]‘w exactly to addition of permutations,*
we have the following theorem:

* By this we mean that to the sam of two rotations there corresponds the som of
the permutations eorresponding to these rotatious, whare the elements in each case
are addad in the same order, Mercly a one-to-one cotrespondence between tic rota.
tirmys and tha permutstions of the disgonals would on the other hand imply only an
olherwise completely arbitrary assvciation of the rotations with the permutations.
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The rotation group of a cube s isomorphic lo the group of all per-
mautations on four elements.

Among the subgroups of the rotation group of the cube, wo mention
first of all those cyelic subgroups of orders two, three, and four, each
ol which consists of rotations ahout one of the thirteen axes of symine-
try of the cube. Lhere are six eyclic subgroups of ovder Lwo cores-
p(mdmfr to the number of axes joining the mid-points of opposite
edges; four eyclic subgroups of order three, equal to the nwmber of
diagonals; three eyclie suboroups of order four corregponding to 10N

number of lines joining the centroids of opposite faces. A
The following subgroups which also occur are very mmehS Giare
interesting; 3 O

{a) The subgroup of order twelve whicl consists of thodc" Totations
whick carry over into themselves both of the tPtIdlletlr'ct\_l{"iﬁ D oand
BDA'C (fie. 9) inseribed ind{lle cube. This
subgroup consists of the 2 304 rotationy about
the diagonals diflerent ffont the identity, the
three rotations Lhmuffh\an angle = ahout the
axes joining the cpnbrmds of opposite faces, and
the identical rot{_mtion

(& Fllem ai}b;,mmm glimrcder eight whicl are
isomorphie e the group of the squave double
pyramides Fach of these subgroups consists of
those rotations of the c'ubp wliich carry over into itselt one of the
lines joining the centroid&®fwo opposite faces, for example the points
Sand 8. (The octahed¥on inscribed in the cube iz a special case of the
square double pyraddd” The group of those of its rotations leaving
fixed two of its aechices B and 8 or interchanging them is evidently
identical with/the'group of the square double pyramid.)

Such agsitbgroup of order eight consists of the following cight
rotationsey Four rotations about the axis 88’ (including the 1dLnut1}
two, J;otatlons through the angle s about the axes joining respectively
thé\(nrd points of the edges AA" and OO, and BB’ and DD'; and two
rotations through the angle s about the axes joining respectively the
centroids of the faces ABB'A" and CDD'CY, and ADIVA’ and BCCB'.

(e} A subgroup of order four which consists of the identical rot-
ation and of three rotations through the angle = about the axes
joining the centroids of two opposite faces. This group consists of those
rotations which occur in each of the three subgroups of order eight
mentioned above. It is commutative and izomorphic to the totation
group of the rhombus, and therefore alzo to Klein's four-group.

Tig. &
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The group of congruences or rototions of a vegular ocighedron is
tsomorphic to the rotation group of @ cube,

In order $o convince ourselves of this it is sufficient to describe
round the regular octahedron a cube (fig. 10} or equally well to inscribe
in the regular cetahedron a enbe (fig. 11). To each congruence of the
octahedron there corresponds a certain congruence of the cube, and
conversely,

At this point there enters in the 1dea ofa dual relationship existing
between a cube and an octa B{roni w8 will 2o into this matter more
closely now. K lbl ary orgin

Virst of all we say that two ‘elc‘ms‘nts (vertices, edgzes, faces) of any
polyhedron are associated 1f\mm, of these two elements is a constituent
part of the other, Ileng€ 8 'vertex and a face confaining this vertex
ag one of its vertices \;\fa,ce and an edge of this face, a vertex and
an edge having thig)vertex as an endpoint are pairs of associated
elewnents, PY;

Two poT} tredr2 are called ducl if the elements of the one polyhedron
can be put {n)ohe-to-one correspondence with the elements of the other
in smch & way that pairs of associated elements of the one polyhedron
(,or:re':pmnd to pairs of associated elements of the other, and further
tl‘)ﬁ\f
Nto the vertices of the fizst polyhedron there correspond the faces of

the second,

to the edges of the first polyliedron there correspond the edges of

the gecond,

to the faces of the first polvhedron there correspond the vertices of

the second.

We easily see that the cube and the octahedron are dual to each
other in this sense. The tetrahedron is self-dnal.
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§ 6. The rofation group of an icosahedron and of
a dodecahedron.* General remarks about rotation
groups of regular polyhedra

There remain two of the five regular polyledra still to be tvesti-

Fig. 12 :',Ix\;_’us
R

polyhedra are dual to each other, and their congruence groups ure
isotorphie, o\ o

1_'n order to F:onvinccmgg%gﬁl@? pud gi_%nsuﬁicient to in:s;‘:ribe
the icosahedron in the dodecahedzon(fig. 14) of to inseribe the dodeca-
hedron in the icosahedron (fig, 15% Thus we need only make ourselves
familiar with the congruende’group of the icosahedron. In order to

L)

7

Fig. 14

determine the number of jts elements we proceed just as for the
tetrahedron and the cube. We consider first of all those congruences
of the icosahedron which leave a certain one of its vertices fixed.

* We mean again a reguler icosahedeon and a reguler dodecahedron.
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There are five such congruences, namely five rotations about the axis
joining this vertex to the one lying opposite to it Binee there are
twelve wvertices (therefore %k ==10, 1, » 11} the pumber of con-
gruences of the icosahedron is equal to X 12 =60,

All thesc congruences are totations of the icosahedron abeout jts
axes of syrametry. In particular the icosahedron possesses the following
axes of symmetry:

Six axes joining opposite vertices; about each of these there are
four rotations different from the identity (through angles of 2z:;
45, 675, &x/3) which bring the icosahedron into coincidence “it;h
itself; therefore altogether we obtain 4 X 6 = 24 rotations. ,{ b

Ten axes joining the centroids of opposite faces; aboub eaghwof these
axes there are two rotations different from. the 1&911‘(@%; Jthrough
angles of 2x/3 and 47/3), and therefore altogether 20 adtations,

Fifteen axes joining the mid-points of appoqﬂaws@geq and about
each of these a single rotation other than thelidentity through an
angle .

Therefore there ate 24 + 20 1 15 rotati 31‘5§md taking into account
the identity, therefore altogether GO I‘Ot'i.tl&

It follows from this that the Icoaahndmn possesses exacily 31 axes
of symmetry.

fince the rotatlon‘ﬁ!’dﬁﬂhifﬂtﬂbl'ﬁmsaiﬂ‘g]mn is particularly com-
plicated we shall not investigatdibany further here. We simply mention
that it is isomorphic to thgalternating group of permutations on five
elements. ) im’\

L™

The rotation gheups of the regular polygons and polyhedra were
defined ag thelr ¢ r @rotips of congruences,

We consid€rmow as it were two spaces, one of which is conbedded
in the other { o picture one gpace as a rigid body, all of whaose sides
are indefinitely extended, and we call it the rigid space, while the other
onc is t\hmwht of as empiy space.

#AWe imagine the rigid space to be embedded in, and able to moveahout
‘m, ‘the empty space. Our polyhedron appears as a fixed part of the
rigid space, and it can therefore only move with it.* With this inter-
pretation we can consider all rotations of the “ rigid ” space about any
axiz in the “ empty ” space which bring the given polyhedron into
coincidence with itself, that is to say which carry it over into itself.
Since every congruence of the polyhedron considered furns out to be a

a8

* An example of a “rigid ” space moving about in an underlying © cmpty
space is provided by a glass sheet moving on a tabletop {see § 2, third example).
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rotation about a suitable axis, and since every rotation about an axis
can Le regarded as defining a rotation of the whole space alivat this
axis, it follows that the group of congruences of a given polvhedron is
isomorphic to the group of rotations of space which carry this poly-
hedron over into itself. We mean precisely this group usually whin we
speak of the rotation group ol a regular polyhedron. Often we sprak of
it simply as “ the group ol the regnlar polyhedron

The groups of the regular pyramids {that is to say the finire #velic
groups), the groups of the double pyramids (the dibedral gromm), apd\
the groups of the regular polyhedra just considered are the vely fAgile
subgroups of the group of all rigid movements in space. \

<
EXERCISES ON CHAPTER ¥ 0
‘\
1. Make an addition table for the group of congruengheNH space of an rqui-
lateral triangle. \ 7

2. Prove that the group of all displacementa of thQ pla,ne is isomorphic to the
group of complex numbers, with ordinary additigns the group operation.

3. Prove that the set of all rotations of the plam, in itself {about all pessible
points of the plane) does not form a nfmug.t
!

4. Make an addition tabld for Lfle gr i) nfa FhE i r o regular fetrahodeon.

. Prove that a sot E of elements of b, group @ is a system of generalors of this
group if and only if no proper subgroup of (7 exists which containg all the ¢lements
of the sel E. \\

6. Make use of the r(‘quh\bmvod in Ex. § to find all possible systems of gener-
ators of the rotation gowp of the tetrahedron which consist of at most thres
elements. (We see ffoin this example that iL is poszible for a fiuite group to
pPOsSsess many dlﬂL\ront wstems of generators.}
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INVARIANT SUBGROUPS N
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§1. Conjugate elements and subgroups
1. Transformation of one group element by another AN "
We consider in the gronp (7 two arbitrary elementﬁ a and b. The
element P\
_ b + a ‘f“ b \ 4
\,
is called the transform of the element 2 by 5¢
We wish to investigate under what con(htlons the equation

—b4a M} —a (1)
W dbrauh}al ary.org.in
iz valid. Tf equation (1) is true« on' adding b to the left of both sides,
we obtaln
e ~l— h==b4a (1%}
Thevefore if (1) is 1:;1‘1\}%‘ 50 also 1z (1), Le. the elements a and & arc

commutable. Com;e.vﬁely if (1') is true then also
 § \ 7

J—blatb=—btb+a=a

7

{ \’
and hen@lj is trne, Therefore;
e validity of equation (1) for ge've.la @ and b, Le. for an clement

e to"‘}ae equal to its transform by b, ¥ 45 necessary and sufficient that
“wghd b shall be commutable, i.e. that equation (1) shall be valid.

In particular equation (1) is true for any two elements ¢ and 6 of
a commutative group,

In order to illustrate the concept of the transform we consider the
group & of all permntations on » elements. Let

{r23.m) o, (123 . ..n
¢= @y Uy g -« Oy TNl By by by

i3
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—h = E}leb!’)"'bﬂ
1243 ...n

b |-ae (51 Bl ... b”) o

L

b by b, ... b,
_b'”er_(b b ban)

g Dy - o

Then evidently

The formula (2) can be expressed in the form of the following suf
Let e\, \

128 ...50 19235 ...4 ;\,
6= and b=
Ty g Fy o0 o By by by .brﬂ N\

In order to obtain the transformn of the perinutution, (z\bf/ the permad-
ation b we noust apply the permutation b to both rows\of. the PEratutation a

when it is written wn the wsual form, AN
We will illustrate this rule further by aL\E&xamplu Suppose for
example that # = 3 and PN

@ — 12 39 11)
2wl d rauhblar 31
We obtain 3 -):' 1 129
et }’;\( ) =(a) e

The rule just introdf)c\éd 13 better understood if we make uze of the
concnpt of a mappma or function.®
The pemnutatum i qpcmﬁe% & function ¥ = f(z)

@}1,2,‘3,...,:«1, y=1,2,8,...,n)

\*w;

i which &&Mwo different values of @ there always correspond two
dlffermf Sulnes of 7. The permutation & is a function y = p(w) of
’rh@\game kind as f(z). The permutation —b + ¢ - b is then the
fuhgtion 1 s — F{z} defined by the formula

2) = p{flp~Y=)]} 3)

We obtain this function by associating with the element ¢(z) the
element ¢[f{z})]. This is immediately obvious if we replace z by ¢ (%)
in formula (3) and observe that

¢l g@)] ==
* See Appendix § 4.
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Ag @ runs through all the numbers 1, 2, 3, ..., # so also does
p{z) only in a different order, The function F(x), and therefore the
permutation —& 4 ¢ - b, 18 uniquely deflned by means of the formula

Flg()] = ol f(@)] (4)

The formula (4) is only another way of writing (2). Finally if we
denote f(x) by y then we can formulate the result stated above in the
following way: )

By the permutation F(z) the element o(z) s replaced by the elentet >
¥ (y) e N

Since every finite group is isomorphic te a certain group of ] per-
mutations the formula (2} illustrates the concept of a tl‘@l.ll‘:f()l m’
at least for all finite groups. "G

~\
2. Transformation of elements in the group of the tetrahadron

As a {urther example we consider the rotat{m group of the tetra-
hedron ABCD {hg. 16). A

Let a4 bc the rotation of the tetraht,dron
through the angle = about the a)us \II\ joining
the mid-points of the 51dc~s B and '131 a% let b be
the rotation about the axis B Shich Carties
into A, A into B, B into C, ie™ which replaces A
by C, B by A, C by B. Then b - a + & Is the
rotation through the andle)® about the axis PQ
juining the rr:ud pomts\g\)f the gides AB and CD.

We can convince, fursclves of this directly, or Fig 16
alternatively byinférpreting the rotation ¢ as the
permutatlon\ D:{[;O]i of the vertices and the rotatien b as the
ABCD
permudsatlon (C‘ AR D)
ABCD

~'If we now subject each vow in the expression bera) the

permutation (éfgg), then we obtain %‘Eig), that is to say

BADC
axis PQ.
In the same way we convinee ourselves that

(A BO D), which corresponds to the rotation thromgh & about the

—qg-+bta
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is the rotation about the axis joining the vertex A to the centroid of
the face BCD and carrying C into B, D into C, and B inte D.

S : ) , . ABCD
[lo this rotation thore corresponds the permutation ( A0D B)]

3. Counjugate elements

Let & be any group.

Theorem I'.—If the element b 7s the transform of the element a m,:
the clement ¢, then u is the transform of b by —c.

Indeed it follows from A
8
b=——c-ra+te N T
by adding ¢ to the left and —e to the right of both sides,,js’ﬂ%f‘e
e4b4(—0)=a \V
and thercfore v
@ = —(—c) + b+ (=) \J
Definition. —Two group elements are calleﬂ\ronjugat? il one of them
ig & transform of the other. QO
Theorem I —If a is conjugate to bmmd b is conjugate to ¢, ther also
@ i3 conjugaze to c. www . d by auhbl ary.org.in
Since ¢ is conjugate to b, therej:mats an clement 4 such that
bis—d L a-d (5)
N
sinee b is conjugate to o, therc exists an clement ¢ such that
@ b=-—etote (5)
and hence A0

\t\ ~dtetd=—etcte
If wel ‘N\d d to the left of both sides of this last equation and —d

to t&mﬂght of both sides, then we obtain
N oa=@—egtetle—dy=—(c—d)-Fo-h(e—d)

1.e. g is the transform of ¢ by e — d, which proves that o is conjngate
to .

Theorem I'' —Every element is conjugate to itself.
Indeed

a=—0+a-+0

Theorems I, I”, I"* assert that the conjugacy of two group elements
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18 symmetrical, transitive, and reflexive.* From this it follows, accord-
ing to Theorem III of the appendixz, that

Theorem I.—Twvery group may be partitioned info cdasses of mutually
congugate elements,

The class of an arbitrary eement a of the group @ consists of all the
elements of G wlich are congugate to a, and therefore of the transforms of
a by all possible elements of the group G.

We establish thot the cluss of the null element of any group & consisty
of this clement alowe {since for arbitrary @ we have —a + 0 4 ¢ =
9 \\\’

4, Transformation of a subgroup N\

The class of conjugate elements to which the element g 6f ¥he group
(! belongs consists of the transforms of the element gy #lf possible
clements b of the group & We now choose an arbitfaby subgroup I/
of & and we wish o consider the transforms of al\pessible elements =
of this subgroup by one fixed, arbitrarily chesen, element b of the
group (. The vesulting set of elements, t@g\is to say the Set of all
elements of the form \S

—bh Lo LB
N

where b is the pa:ri-icula-r‘éﬁ?éﬁ‘fiéill?'WQW;;BT@'?'ﬁz.-ick wwe have chosen and
z runs through all the elements of the subgroup I, is called the transform
of the subgroup H by b, we \dén_oze il by
\\ —b+H+H
Assertion: —b 4 + b is a group.
Progf —1. Deté; and ¢, be two elements helonging to

"\\ b+ H+b
e slkp}wf'%‘;t ¢, + 6, belongs to
O b b
N ‘}NOW a=—btm4b (6)
6= —b+m b
where z; and x, are elements of the group H.
From (6) it follows Immediately that
ogte=—b+tzt+atbd (7)

* Bee Appendix § 5, in particular section 3,
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and therefore ¢; + 0, ts the transform of the element = 4 =, by b;
hence ¢; + ¢, belongs to —b — H + 6.

2. We show that the null element 0 of the gronp & belongs to
—b — H + b, Tndeed since 0 is an clement of I7 and

—b-+04+0=10
then also 0 helongs to —b -|- H 4 8.

N\

3. Fmally if ¢ belongs to —b Lo JT 4 b then so also does Xo;

for if ¢ belongs to —b + 5 then @ =—b-x+5 whc\m z
is some element of H. But then N

&

(b b o 8) = = (—0) L)

and therefore —u is the transform of the clement \&w #of the group /I
by &, and hence —a is an element of the set —&\M H + &

Therefore —b -+ H + b 1s a group. \\

To every element x of the group A thei\e corresponds a uniquely
determined element of the group -—b + NF+- b, namely the element
—b —I— T+ b,

In this way to two (@WJ@M@}%%&@ o there eorre%poml two
distinct elements —b -+ & -1 band —b + 2, + b; for if z; =F w, then
on account of the wniqueness of mbtlactwn the elements z + b .md
€ + b are also dmtmct,“ *a(nd hence also the elements —b |-, +— b
and —6 -z, + 6% &1@'@1’0!‘6 if we Iet the element & of the group 17
correspond to the lement —& + « —+ & of the group —&+ H |- 5,
then we obtam ‘' one-to-one corrcspondt,nce between I and
—b + H + b, (Q1 account of the equations (6) and (7) there corre-
Sponds to tb\e;\um of two elements », and =, the sum of the elements

—b - g0 and —b 1w, + b, Therefore this correspondence is an
i%omar’ﬁhism between the groups IT and —b -+ I -} b.

~ We have therefore proved the following theorem:
N\ Theorem II.—1he transform of the subgroup H of the group G by an
element b of G s itself o subgroup of G which 1s isemorphic to H.
Remark.—The following results are immediate consequences of the
definition of the transform:
1. If ¢ is a commutative group and H a subgroup, then the trans-

* From the relation x - & = @, -+ b = citfollowsthatz, = ¢ — bandw, = ¢ — b.

+ The relation —b 42, + b= —b = o - b=c gives rige to a, - b =8¢
and @y, +~ & = b+ ¢
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form of H by an arbitrary element b of G is H itself, since in this case
the transform of any element z by & is z itgelf, le. — b+ L b ==z,
2. If @ is any group, H a subgroup of G, and b an element of H then

—b1+H+tb=H

Indeed, for any element z of 77, the element —b + x 1 b belongs
to H since b belongs to H. Therefore

-6+ H+bEH '
Fince —& belongs to H wo also have ) \
W O+ (bl N
Whence P\ N
HG—b4+ HAb m’\z"
Therefore )

b A +b=H )

If the subo'roup H, is the transform o{\tile subgroup H, by the
element & then M, is the transform of /by the eloment —b.

The proof follows from Theorer, I’ pf gection 3.

Defindtion.—Two még«ou@swﬁm sty (@ g of which s a transform
of Uer’ ather, are called conjugate, subgfou P8

Since —0 4+ I7 4+ 0 = Hnip follows that every group is conjugate
to itself.

Yrom Theorem 1 }{'follows that two subgroups which are con-
jugate to a third awe also con]ugate to each other, so that the set
of all subgroups ¢ 668 group ¢ is pertitioned into classes of mutually
conjugate suh{‘rcmps

We know{already (Theorem IT of this section) that all mutually
congugate Wbgroups are isomorphic to one another.

5”.\ Eﬁir’uﬁﬁes
\ )As we have already secn, the rotation group of the regular tetra-
hedvony has the following subgroups:

1. Two improper subgroups: Firstly the subgroup consisting of
the null element alone, and secondly the subgroup consisting of all
twelve rotations of the tetrahedron. Xach of these subgroups is
evidently conjugate only to itself.

2. Three subgroups of order 2: Hy,, Hyy, Hy,, cach of which consists

of rotations through the angles 0 and x about a line joining the mid-
& (H213)
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points of & pair of opposite sides of the tetrahedron. Al these groups
Jorm a cluss of conjugate subgroups.

3. The group H of order 4 (Klein’s four-group), which 15 the (set-
theoretical) union of the three groups Hyy, Iy, My, and which there-
fore consists of the identical rotation and the rotations through the
angle = about the lines joining the mid-points of the three pairs of
opposite sides. From the definition of the group H as the union of the
groups Hy,, Hy,. H;, and from the fact that the groups I, Hy,, 4.
form a clags of conjugate subgroups, it follows that the group H is
confugate only to itself. \

4. Four subgroups of order 3: H,, I, H,, /I, Each of%fem
congists of rotations through the angles 0, 27 ‘% 473 abont 5 lie
joining & vertex to the centlold of the opposite face. All tﬁ{-’\f’ groups
evidently form o class of conjugule subgroups. o\

Therefore all ten subgroups of the rotation g‘f@\ﬁ) of a regular
tetrahedron may be divided up in the following\way into classes of
conjugate subgroups: ‘,"\\:

(a) three classes each consisting of a ginald element, namel ¥ the two
classes each of which consists of one of thenproper subgroups and tle
class consisting of the single subgrouphof order 4,

(b) the class consistingvofl bhautiyeer yudegonps of order 2,

(c) the class consisting of thgi.fbur subgroups of order 3.

P4\

§2. Invalis{frt\ sabgroups (mormal divisors)

1. Definition N

If a subgroupﬂ of a given group 7 possesses no conjugate sub-
groups diffevand-from itself (if therefore the class of all subgroups
which ar 8"\1] ugate in the group @ to the subgroup # consists only of
the groipuH) then we call the subgroup # an invariant ® subgroup (ot
%ormal dmsm) of the group G.
~(Evidently the definition of an invariant subgroup can also be

rmuldted as follows:

We call o subgroup of a group G invarient if the transform of an
arbitrary element of the group H by any element of the group G is again
an element of the group H,

The idea of an invariant subgroup is one of the most important
ideas in the whole of algebra. Even if it is impossible i this short

* The word * invariant " signifies that 5 is left unchenged by every transformation.
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exposition to make clear to the reader the full significance of this con-
cept, which is particularly apparent in algebra in connection with the
su-called Gulois theory, we hope that from the investigations of this
chapter and the nexf the reader will see how very significant invariant
subgroups are in the logical structure of group theory.

2. Examples

The two improper subgroups of any group are trivial examples of
invariant subgroups. Moreover evidently every subgroup of a com™
mutative group is an invariant subgronp.

N
We niention some less trivial examples. N

'\

1. The group of displacements of a straight line along iteglf is an
iuvariant snbgroup of the group of all CONZruences, of the line
(u[mp‘[ﬁ‘l V.§8), ,\

. The cyclic group 4 of order » which consists.ef all congruences
of ﬂne fivst kind of an #- pointed double p\«ra,uml 3¢ an invariant sub-
group of the group of all rotations of the d e pyramid.*

3. The alternating permutation grogprﬁn on n numbers is an
invariant subgroup of the group 8, of allupermutatlonq on # nmmbers.
For if b is an arbitrary element ofs Bhe group 4, and therefore an
arbifrary even pmmuwﬂgp&ﬁ%pﬁlgi}, 8Rgarpitrary element of the
group &, and therefore an arbiffary even or odd permutation, then
the sign of the permutationl~a + & + @ is equal to the product of
three numbers, each of yqﬁi}h ts equal to +1 or —1:

}égn.-—a,) {sgn b) . {5gn @)

Hince {sgn —a)ex (Sgn a), then {sgn —a). (sgn @) is always equal to
-1, that is teygay equal to 41 for srbitrary «. It follows that

NO7 Ggn(—a+ 0+ 0) = (sgnd) = +1

which} mcans that —e& - b + « is an even pernmutation and therefore
melgment of the group A,
S lence the transform of an arbitrary element b of the group A, is

* Indeed if @ is o congruence of the first kind and & a congrience of the second
hind then (as we have shown in Chapter V, §3)
g+ h=5bb—a
and hence
—bt+tat b= —n
Since ihis is true for every element a of the group 4, thon
—b+A4+b=4
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again an element of the group 4, (in general different {rom b}, 1o, A,
is an invariant subgroup of the group S,.

We consider examples of both Invariant and non-invariant sub-
groups.

We have alveady seen that in the group of all rofations of a tetra-
hedeon there is one proper invariant subgroup which is of order 4.
Since the group of all rotations of the tetrahedron i3 isomorphie to the
alternating group 4, of permutations on four elements (that is to say
to the group of all even permutations on four elements), tlis resulby
may also be formulated as follows: The aliernating permulatin grong
on four elements possesses one invariant subgroup of order £, (NS

This result is very important. ¢ turns out that for n > 4 thidghternet-
ing permutation group A, on n numbers contains no NOATIENE SubgroiLp
apart from its two impropersubgroups. This fact, the préafol which the
reader can find for example in e Theory of Groups 'h} A, G. Kurosh,
has great significance in algebra; it is closcly conngebéd with the result
that in general an equation of degree n > 4 c-ar%npc\lfe solved by radicals.

The rotation group of the cube is ag we kilow isomorphic to the
group S§;. Therefore it has an invariang ‘s,ul;group isomorphic to 4,
This subgroup is already familiar to ngfrom Chapter V, § 5. It consisia
of the rotations which carry over mito’ themselves the two tetrahedra
inseribed i the cube. www.dbr@@i}ibrary,org,m

We have alzo already mentioted the three subgroups of order eight
contained in the rotation.gn&iup of the cube. These three groups forn
a class of mutually e nsj\flgé,t-e groups, and therefore none of them is
invariant. Howevehihe intersection of these three groups, consisting
as we know of thenid] clement and of three rotations each through an
angle m about & ii?le joining the mid-points of a pair of opposite faces,
is an invarjiapd’subgroup.*

The patation group of the cube possesses no proper invariant sub-
groupa }ét‘uer than the above-mentioned groups of orders 12 and 4.
Me'mention further fhe following classes of conjugate groups:

2\ ™
S L. The class consisting of three eyclic groups of order 4; each of
these groups consists of rotations about one of the axes joining the
mid-points of two opposite faces of the cube,
2. The elass consisting of four cyclic groups of order 3; each of
these groups consisty of rotations about one of the diagonals.
3. The class consisting of six cyclic groups of order 2; each of
* The reader is advised to prove the following general theorem: The intersection

of all groupy belonging to a certain class of mutually conjugate subgroups is an invari-
ant subgroup.
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these groups consists of rotations about one of the axes joining the
mid-points of two opposite edges.

Finally we consider more closely the already familiar group of
moverients of a plane in itself {Chapter V, § 2).

e make the following preliminary remark. Fvery movement of
the plane in ifself agsociates with every point & of the plane a certain
uniguely determined point f(#) of the plane, namely that point nto
which the point » 1s carried by the given movement,

We can therefore regard every movement as a certain mapping ©Ff
the plane on itself. This mapping is a congruent mapping in thesense
that the distance between points is left unchanged. If the twd\points
@ and y are carried over into f{z) and f{y), then the distancévbetween
Flzyand fly) is equal to the distance between 2 and 3 {From this it
follows in particular that two different points of the plang’can never be
mupped into one and the same point. If the twQ¥pdints x and 4 are
different, then the distance between them is th; equal to zero. But
then the distance between the points f{zj7amd f(y} must also be
different from zero; therefore the points fitmand f(z) cannot coincide.
Therefore every movement s a one-to-one foapping of the plane on iself.

A movement, interpreted as a one-go-one mapping of the plane on
itsg]f, Wjﬂ be denoted 12\}: “’F&e dfi}l:lgllh?gf glagg(,g}éefﬁ x is of course a general
point of the plane. RN

Suppose that two movements f(z) and ¢(z) are given. We wish to
construct the transforrﬁ»otﬁ F(®) by ¢(z). By definition this iz the
movement AN -

N F) = o fle @]} (D

Since pfz) ig'a one-to-one mapping of the plane the movement F(x)
is completely’determined when we know into what point g(s) is carried,
for urbitﬁs\fy ‘x, by this movement. In other words, the mapping F(x)
I} deﬁpg\i\for arbitrary z when we know into what point p(x) is carried
{againilor arbitrary z). If we now replace 2 by ¢(z) in the formula (1)
dihobserve that g~ ¢(z)] = « then we obtain

N\

Flp(@)] = ¢lf=] (2)
The movement F(x) is completely determined by this formula,
If we put fla) =y

then formula (2) may be expressed as follows:

For arbitrary = the movement F carries the point @(x) over tnio the
point g(y).
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We prove now the following assertion:

1f f i3 a rotation through the angle « about the point @, then F
is a rotation throungh the same angle « about the point gfa) (flg. 17).
Hinee fig a rotation about a, then

oy =a
from which it follows by formula (2) that
Flo] = ¢(a) N

and therefore F is a rotation about @{a). The movement f rotatdsan
arbitrary half-line % izsning from e through the angle « and Ca»{ueﬂ. it
over into the half-line f(%). The movement g which iz a‘corfgrnent.

o [t(h)] b(h) fih)

X,

$a) ﬁka’

Flg L‘?

.
N

mapping carries over £18 iR %%,{f%blﬁ%ﬂyg 58 #he two haif-lines 4 and

F(h) zeming from a and mehned at an angle ¢, into a congruent figure
consisting of the two half- hn\s:s plh) and e;[ FAY] = Fle(h)] 1ssuing from
wla). Thercfore the hilf‘hne Flg(k)] is obtained from the half-line
@(h) by a rotation throngh the angle x; i.c. since the movement ¥
rotatcs the halt—hne g;t}e,) through the angle «, F is a rotation through «.
From nhat ®ohave just proved it folluws that:

The trQﬂ m by an arb?émg wovement @, of the group of rotalions
b

of the pla\m& out & Ppoint @ s the group of rotalions of the plane about the
pomt q"

p \Let I bP a translation of the plane along the line ¢ and let ¢ be
an arbitrary movement of the plane.

Then first of all we have the identity
floy=g9

Le. the line g goes over into itself by the movement f.
The movement g carries the line g over into the line ¢fg). Applying
formmla (2) to eack point of the line g 1t follows that

Flgig)] = ¢l9)
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The movement F therefore carvies over the line ¢(g) tnto itself and hence
is & translation along this line. Since ¢ is a congruent mapping the
distance between @ and f(#) is equal to the distance between gfx)
and ¢f f(=)], and therefore between g(z) and Flo(s)).

This means that the translation F displaces the poinis of the plane
through the same desiance as does the sranslation f.

Yrom what we have proved it follows that:

Lhe group of parallel-displacements of the plane along @ given line g
1z fransformed by any given movement ¢ inlo the group of parallél™

dispincements of the plane along the line ¢lg). O\
¢\

Since every movement ¢ transforms every parallel- dibplaceméiit of
the plane inte a parallel-displacement we ohtamn the tollowtnﬂ unport-
ant result:

The group of all pardllel-displacements of the plane{ulong all possible
lines) ds an tnveriant subgroup of the group of oll thoedents of the plone

158 !LS'P{}F ‘\\ /

WERC&Eﬁ@fB}CﬂE@Bm‘m

. Find the transform b &fa = (i ?} 2 ;) by e ; 3 ? :), and verify
thdt thl transform of b by % s .
2. Find the Lra.nsform\(}f the element b in Ex. 1 by the element 4. Show that
this elerment is conj E{grl:'t(, to ¢ in S,
3. Prove thafnHe’ rotation group of the tetrabedron is pariilioned into the
following c-lase.esg&f vonjugate elements:
(1) tlfé\x;'hws consisting of the null element alone;
(?\}'Qhe class which consists of the rotations through tho angle 27/3 about
cach of $he four axes joining a vertex of the tetrahedron to the cenbrmd of the
oppos}te face;
M} Y t-he olass which consists of the four rotations through the angle 47:/3
\a,hout the same nxes (here and in (2) the rotations are measured gither in the
clockwise or eonnter-clockwise sense when viewed from the fixed vertox);

{4} the class which consists of the rotations through the angle = about
tho three axes joining the mid-points of the pairs of opposite sides of the tetra-
hedron.

4. Determine the classes of conjugate elements in tho symmetric group S,
and the classes of conjugate subgroups.

5, Detormine the clagses of conjugate subgroups in the dihedral group of
order 8, and hence its invariant subgroups.
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6. The symmetric gronp &, of permutations on the # numbers 1, 2, ., ., »
is evidently a subgroup of the aymmotric group 8, of permutations on the
numbers 1, 2, ..., m for m > n. Prove that this subgroup is never invartant.

7. Prove that the set of elements which commute with cvery clement of o
group & form an invariant subgroup of . (T4 is culled the cenire of G.)

8. Prove that the centre of 8; consists only of tho identical permutation.

¢. ¥ind the centre of the dihedral group of order 8.
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Chapter VI
HOMOMORPHIC MAPPINGS A\

§ 1. Definition of a homomorphic mapping and ,{ \
its kernel O

N/
L 3
S
."

Definition and simple properties (
We suppose that there is associated with each element @ of a group

A an clement
b=f(=) Y,

of a group B. The totality of elemens 5¥ Sfla} of the group B so
obtained we shall denote by f(1). We sdy) ythat what we are considering
is a mapping of the gronp 4 nto th’egroup B that is to say, 1o sct
aovation, f(AYE B
We 1n€;0d)uce the ﬁ:)]f[\'ow':lbl uhgr Aen?EfdBinition:
A inapping f of @ group 4 nio a growp B is called komomorphic when
the condition

A
s+ ) = flo) Sl M

t¢ fulfilled for K7, pmr of clements a; and a, of the group 4, where the
sign + must na‘tu_’ra]ly be understood on the left-hand side of equation
(]) as the sJ,g'n of addition in the group A, whereas on the right-hand
side as theveign of addition in the group B.
Th.ééwm —If fis @ homomorphic mapping of @ group 4 into a group
B, tfx 0 the set f(A) € B is a subgroup of the group B.
\ ‘Pmof It is sufﬁmcnt to prove

1. If b, and b, are elements of the set f{4), then likewise by -+ b, 18
an clement of the set f{4).

3. The null element of the group B is an clement of the set f(d).

3. If b is an element of the et f(4), likewise —b 15 an element of
the set f(4).

We prove these steps 1, 2, 3 in turn.
77
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1. Let & and b, be two elements of the set f{A). This significs
the cxistence of elements @, and g, of the group 4 satisfying

fla) = b and flay) = by
But sinee the mapping f is homomorphie, we have
Jlay + ag) =— by -} by

Accordingly, by means of the mapping f, the element a, — a.) of the
group A corresponda to the element &, + &, of the get f{4). The i\

step 1z therefore proved. A
2. Let 0 be the null clement and ¢ any other clement of th&\;rmm
. In the group 4 we have
a—0D=ua ~< 3
¢
from which it [ollows that for the group B \~\

fla +0) = flo) N

But since the mapping is homomnmorphic we hc@ e

“0

fla) 4+ f{) —-f
Le. f{0) 15 the null elemont 0 bfiléqﬁﬁ%vupy}grgThm finishes the second

step.

3. Let b be any clemepd, of the set f(4) © B, There exists an
clement ¢ of the group 4 €ich that

‘\\\ Flay =t
We denote by b, the)(,]cment fl—a) of the get f(4), and prove that
N ,
N> b'=—b
Now we h&we'
\ a4 (—a) =0

’ s

Q\‘:ﬁ ~1t follows that
fla) +fl—a) =0
(0" denoting the null element of the group B), and therefore
b+ =0

e,

Y= —b

which is what was to be proved.
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Clonsequently each homomorphic inapping of a group A inlo a group B
is a homomorphic mapping of the group A onto a certain subgroup of the
group B.
Bemark I.—Two mportant assertions, which are true for every
homemorphic mapping of a group 4 inte a group B, are contained in
the discussion just carried through, namely

f0) =0 @)

f—a) = —f(a) B

Remark [I.—In view of the fundamental remarle in Chapter\f[n §2,
we cah state that: \

atil

A ong-lo-one ﬁomomorphw mapping of a group A onfo/t group Bisan
tsomorphic mappeng. \

Defindtion—Net f be 8 homemorphic mapping ol group 4 into a
group B. The set of all elements  of the grou}'\h Nthat are mapped by
f into the null element of the group B is called-the kernel of the homo-
morphic mapping f and is denoted byf ).

Theorem.—The kernel of @ ?wmommphao mapping f of a group 4
ko o group B is an invariant subgm‘ap of the group A.

Proof.—From the dﬁﬁmtddmaufrmhﬂmﬁngoimhlc mapping it follows
that the equations

> 0, fla =0
g 3

imply 2\

N e+ %) =0
Thus if a; and ag '\ne elements of {20}, then a; + @, is also an element
of fFHI). N

I'urt erwe have seen from the proof of the previous theorem that
f(0) is thewull clement of the group B; thus 0 is an element of /~1(07)
Eimally it fla) = 0/, then f( a) = —fla) =0, and we conclude
bt 3t e is an clt,mcnt of /7L0), then so is —a. From this it follows
\\La:d ily that f~1{0"} is a qnabgrrmp of the group 4.
In ovder to prove that f-1{0") is an invariant subgroup of the group
A, we must convince ourselves that the trapsform —a 4+ « |- ¢ of any
clemont x of the group f~1{0") with respect to any element ¢ of the group
4 is again an element of the group f40"). In other words, we must
convinee ourselves that we have

fl~a+z+a)=0

whenever Jlr) =0,



80 VI, Homomorphic Mappings
But this is immediately obvious, for if f{z) = 0’ then
fl—a 4z + a) = —fla) + flz) + fle)
—fla} + O + fla) = —fla) -+ fla) =

This completes the proof of the theorem.
We shall see later that conversely each invariant subgroup of a
group 4 is a kernel of a certain homomorphic mapping of the group A.

N\
§ 2. Examples of homomorphic mappings \ O

1. We consider the group & of all whole numbers ¢ "f}:
oy —n—T1) ., =2 —1,0,1,9, ..., (s‘(s;l) n

and a group G, of order two whose elements ar\ Oy and B, and whose
addition table is accordingly

&

S\
bo+ by = by by + By ._bl—rbu‘_bl, b by = b,

Obviously, &, is the null element o’f' the group .

We now construct the follggx 11{5 %&dé}i_}y]_llﬂ ; of the group ¢ onto the
group Gy

W1th each even numberdve assomate the element by, of the gronp
@y and with each odd nymber the element b, of the group . This
mapping ig hﬁmomorp fo,“For let @ and a be two whole numbers. If
both & and ¢’ are eveu numbers then ¢ + o' is likewise even, and we
have

£Q+ a) =fla) = fla') = by = fla) + fla')

If one of,@e two numbers @ and @', say g, is even while the other is
odd, thig}.L ¢ -+ @' is odd, so that we have
\‘ ’ f@=b  f@)=b

fla+ @) ==b = b + b = fla) + fla")

If finally ¢ and &' are both odd numbers, then ¢ - &' is an even
number and we have

fla) = fla’) = by, fla+a')=by=b -+ b —fla) + f(@)

The kernel of our homomorphism is obviously the group of all even
numbers,
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We generalize this example. Let any natural number m = 2 be
given. We examine the ¢yelic group G,, of order m with the elements
by by, Ogy o+ o By, and the addition table

by b, by vee [ b
5, by b b, . By s by
£y | b by by e b1 By S
b by by b, b ) .@fﬁ
B By boa ) &, \ 'S’;\_: bres
b | by | B | B 4 W b | B

Y

{the null element is denoted by &p). A\ .~

We now construct a homomorphie mapping f of the group G of all
whole numbers onto thé“@fdﬁﬁii@#ﬁ"‘a"}’-m’g-i“

For this purpose we call to Mind beforehand the following thecrem
of srithmetic: Each wholedtunber a upon division by o natural number
m leaves as remainderconagf the numbers 0,1, ..., m — 1, This means
that the remainder coprebponding to the number o is defined as the uniquely
determaned non-negettve number r, which satisfies the conditions

AN
e =myg -+ 1, 0=r=m-—1 {1}
:"\§¢
where g(i}zi’ whole number (g is called the quotient of the division of
@ by #)." This theorem is generally well known for positive @. For
@£ B, we obviously have

) 3

0=m.0-+0

80 on division of 0 by any natural number we obtain zero for the
quotient and also for the remainder.

The case of a negative ¢ however requires, perhaps, some explan-
ation, If 4 is negative, then —a is positive.

We divide the natural number —a by the natural number m,
denoting the quotient by ¢’ and the remainder by . We may assume
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7' to be positive (should ' = 0, then —¢ and also consequently ¢ would
be without remainder when divided by #). Thus we have

—g=my +1 H<r=m—1)
and consequently

a=—ng —r=—m—my' +m—r =m{—1 —¢)+ (m -+
From 0 < v = m — 1 it obviously follows that

Dom—r=m—1

O\
If we se g= —1—4¢", r =m —+, then we have for the whole
numbers @, ¢, 7 the relation ) \ N
a=mg+y¢r D=Zr=Zm—1) AT

We easily convince onrselves that the represent-aj:-(ﬁn’.'of the whole
number ¢ in equation (2) for a given natural numbQer W is unigue, g,
being integral and 0 = » = w — 1; that ig, the ®hole numbers ¢ and
7 are completely defined by the conditions @)z\ Tor suppose we alsc
have ~

a=my+rn O=A=Em—1) (29
Then if we subtract equation (2 “erm by term from equation (2)
we obtain www.dbl;a}zlli'lfrary,org,jn
=mlg gl r—
Le. pss =l —q)

From this it follp%s\ that the whole number » — 7, is without
remainder when digidded by m. But v — #; is the difference of two
non-negative nuhibérs that are not greater than m — 1, hence the
absolute valuéof this difference is also not greater than s — 1. There-
fore the rwmber v — 7, can only he without a remainder when divided
by m \Eh\;} 1t is equal to zero. Thus we have

\\ r—n=%40 r=mn
%d" a =myg -Fr (3
From equations (3) and (2) we obtain
a—r a—r
w17 9
hL=¢

which is what was to be proved,
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In eonsequence of the incquality
0=Zr=Zm—1

there corresponds to the whole number ¢ the element 4, of the group
,. For any fixed chosen natural number m Z 2, there thus corre-
sponds to each whole number 4, a uniquely determined element of the
cyelic group &, of order m, namely the element b, where r is the
remainder when ¢ 1s divided by m. We shell call this element b, the
reawainder of the number @ modulo m. N\

By wieans of the relation just stated, a mapping f of the crrcmp &
vnto the group G, is gencrated. We prove that this map]imff is

hommunorphie. . \J
Let ¢ and ¢’ be two whole nurnbers and let ("3«:
@ =wmg +r 0<r<m-—{]~ )
a’ = mg ¢ 0 =7 = N1
o\

Then we Lhave

a+a =mig g ‘%4}\:[—?'

But now the number ¢+ 2 #’, which Imtm’aﬂy satisfies the inequality
0 =7+, need not S&LLSIY the Unequality r -+ = m — 1. Buf
(’.-ertainf v we have www . dbr a’uhbl ary.or g in

r - M= mg" +

where ¢ s the quotmnt”l the division of r -= +' by  (we easily see
that it is cither equa}\ﬁ‘@ 0 or 1) and p the remainder in this division;

therefore we hav O
a-~w>=m(q ¢ +¢Y+e 0=psm—1)

o\

Thus to tb'esjzlcnwnt « -}~ @' there corresponds in our mapping f the
clementyf, of the group (7.
Ifwie’ examine the addition table of the cyclic group of order m we
;:Qe”‘t)jé-t
\ 3 b,. + b.rr =b
(where p as formerly is the remainder in the division of r - 1" by mj).
Thus we have

fla + @) = b, = by -+ by = J(0) +f(&)

which proves that the mapping f is homomorphic. ‘
The construction that we have just accomplished of a homomorphm
wapping f of the group of all whole numbers onto the cyclic group of
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order m is of fundamental irportance i the elementary theory of
numbers. We shall denote this homomorphic mapping by f,.

The kernel of the homomorphism f,, 18 the group of all whole
numbers that have no remainder when divided by m.

II. Let 4 be the group of all movements of a plane in itself, Wa
choose in the plane a fixed point O and a fixed vector & Issuing from .
Each movement f of the plane in itself carries over the vector 4 inte
a vector f(A). The vector f{A} forms with the veetor £ a cortain angle®
which we denote by w;. This angle is zerc if and only if the vecipah
f(A) and A are parallel and in the same sense, in which case the mowa-
ment; f is therefore a paraliel displacement. N,

Now we assoclate with the movement f a rotation of tﬁa plane
through the angle w,. In this way we obtain a mappinglot phe group
of all movements of the plane onto the group of all gdblitions of the
plane about the point O, and onto the group « isOfbrphic to it (see
Chapter V., §2). This mapping is homomorphie, asghe reader can easily
convince himself. The kernel of this mapping’fs the group of paralicl
displacements of the plane. o

II1. In Chapter V, § 2, in the second example it was shown that o
each real number there corrt,bponds a'member of the group «. By
means of this Gorresponglp‘p.gﬁcﬁjmm%p]épgrg}ftppmﬂ of the group of
all real numbers onto the group*is produced, and the kernel of this
mapping is the infinite cychc group, conststing of all real numhers
which are integral multlpléb of 2.

h\

N\

Y EXERCISES ON CHAPTER YII

1. Bhow tha[ﬁ\"r:];e permutations of the forms 123d ...k ) and

1234 N 12a3ey ... 8
(2 1 b, by % .b ), where @g, @4, . .., @ and by, By, . . ., By, are rearrangerments
S

of 3, 4, ° 5’. .\ kb, form a subgronp of order 21 % {£ — 2}1 of the symmetrie group S;.
X &} Show that the subgroup of Ex. 1 can be mapped homomorphicaily

(\tﬁ 8.

{b) Consider the analogons problem of a subgroup of &, of order 3! <
(& — 3)! mapped homomorphically onte S,.
3. What are the kornels of the homomorphisms of Ex. 29 Verily by the
methods of Chapter VI that they are invariant subgroups of the appropriate groups.
4. Show that if a cyelic group is mapped homomerphically onto a group G
then & must also be gyelic.

* We obtain this angle between the vector b and the vector f{k} if we draw through
the point O the vector that is parallel to and in the same sense as the veetor f{A).



Chapter VIIf

PARTITIONING OF A GROUP RELATIVE TO A
GIVEN SUBGROUP N

DIFFERENCE MODULES

A

7'\

§1. Left and right cosets P

1. Left cosets LV
Let a group G be given and in it & subgroup RN We now st our-
qph(a the task of proving the following: e» given subgroup U
defines {and indeed In general in two d_lffcr Wways) o division of the
gmup 7 into a certain system of muthd l? dlq]mnt subsets, one of
thiek 1s the subgroup U itsell, while ‘the remaining ones can be con-
strreted wniquely from U by mcans’o.f “an extremely simple procedure.
In order to obtain mwmﬁﬁmﬁrm@prcgreﬁd as follows: We call
two {,]Lmonm o and b of the peotp & eguivalent with respect to the
subgreup I, when the left difference of the elements & and a, that is to
say the element —a 4 J{19 an element of the subgroup U.
This property af éﬂl\m alence (we call it left-sided equivalence) is
syrmelric. In factd ab

O —a b=y
\n
where u 1ﬂ\an ‘clement of the group U, then
SO g (gt b= —

AN
dnd i 15 likewise an clement of the subgroup U.
"This equivalence is transitive. 1f namely

—b L c= 1y

where 1, and u, are elements of the subgroup U, then
o= (—a - b) + (b4 ) =+ U

and i, - |- u, is likewise an clement. of the subgroup U.
¥ &5 (240}
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order m 18 of fundamental importance in the elementary theory of
numbers, We shall denote this homomorphic mapping by 7.

The kernel of the homomorphism f,, is the group of all whele
numbers that have no remainder when divided by .

II. Let A be the group of all movements of & plane in itself. We
choose in the plane a fixed point 0 and & fixed vector A 1ssuing from (3.
Hach movement f of the plane in itself carries over the vector % invo
a vector f(h). The vector f(A) forms with the vector % a certain angle*
which we denote by w;. This angle is zero if and only if the vecsafah
f{#) and h arc paralicl and In the same sense, in which case the mova-
ment f is therefore a parallel displacement. D

Now we associate with the movement [ a rotation of t‘}ae plane
through the angle w,;. In this way we obtain a mappmmof‘fhc group
of all movements of the plane onto the group of all@dbitions of the
plane aboui the point O, and onto the group x isdlbiphic to it (see
Lhapter V., §2). This mapping iz homomorphic, asthe reader can easily
convince himself. The kernel of this mapping’ds the group of paraliei
digplacements of the plane. N\

.

III. In Chapter V, § 2, in the dec’ond example 1t was shown that to
each real number there corre&,pond,s g member of the group «. By
means of this corrcspondﬁw&p&mm)g*(grg}pppmw of the group of
all real numbers onto the groupi’is produced, and the kernel of thia
mapping 18 the infinite cvchc group, cousisting of all real numbers
which are integral mulmpli,& of 2.

\\

N\

& “ EXERCISLES ON CHAPTEHR V1

{ N ! Qo L
1. Bhow thdbythe permutations of the forms P2sée ... 4 ) and

. 29§ F2ayay ... ay
(1 234 \ )F ) where a@;, @ oy, and by, b, by & angernents
: 3y Bgs o v 0 (g w By - - -y By 10 Tearrangements

214 b(\ EJ; ar Mg L E| &

of 3, 4,“ Ay b, forma. subgroup of order 21 x (£ — 2)! of the symmotric group Sy.
2 ‘ﬂa} Show that the subgroup of Ex. I can be mapped homowmorphically

\tg S,

{6} Consider the analogous problem of a subgroup of §; of order 3! x
{(k — 3)! mapped homomeorphically onto &,

3. What are the kerncls of the homomorphisms of Ex. 27 Verify by the
methods of Chapter V1 that they are invariant subgroups of the appropriste groups.

4. Show that if & eyelic group is mapped homomorphically onto a group &,
then ¢ must also be eyclic.

* We obtain this angle between the vector k and the vector f(k) if we draw through
the peoint O the vector that is parallel to and in the same scnse as the vector f(k).



Chapter VIIT

PHRTITIONING OF A GROUP RELATIVE TO A
GIVEN SUBGROUP N

DIFFERENCE MODULES

A

\

!

§ 1. Left and right cosets P

1. Left cosets LV

Let a group G be given and in it a subgroup O\ AVe now set our-
gelves the task of proving the following: e» given subgroup U
defines {and indeed in general in two differ €ways) a division of the
group (¢ lnto a cerfain system of muthdlly disjoint subsets, one of
whicli is the subgroup U itself, while $he'Temaining ones can be con-
strected uniguely [rom T by meaqs:é;f ‘an extremely simple procedure.

In order to obtain this phtititirse pigeend as follows: We call
two clements ¢ and & of the Peonp & egusvalent with respect to the
subgroup £, when the left Qitfercnce of the elements & and ¢, that is to
say the element —a + 513 an element of the subgroup U.

This property of Eq\jva.lence {(we call it left-sided eguivalence) i3
symametrie. In :Ihc-t:.i:f:

“.\ / —f + b == U
R
where 1 ia\tg}’élement of the group U, then
s..’,\\ ‘—b + Qo= —(_a, ,_i_ b) = —W

AW
a2y is likewise an element of the subgroup U.

This cquivalence is fransitive. If namely
—a+b=mu
—b =1
where w1, and u, are elements of the subgroup U, then
— g (—a b)) (b o} =y o

and u; + 4, is likewise an element of the subgroup U.

7 &5 (4 249)
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Finally, this equivalence is reflexive, since
—a + a=—="~0

and 0 18 an element of the subgroup U,

Thus on the hasis of Theorem ITT of § 5 of the appendix the grown
( is partitioned into sets of clements which are equivalent to each other
relative to the subgroup U, These sots are called left cosets of the group
G with respect to the subgrowp U. We point out that the left coset
'K, of an element o of a group & (i.e. the laft cosct containing e
consists of all eclewents » satisfying the relatlonship —o 4 2=\,
where % is an element of the Qub;;flcﬂup U, Le. of uil Pr’(’mwc?“?\af‘iw
Jorin w = a - u, where u is an element of the subgroup U. O

We remark further that if ¢ i an element of U (ln 'p.artwulal if
@ ==0) then ‘K, = U, because in this case ¢ + » is afelement of &/
for any « from the group U; and cach element ueoft }he group [ can
be exhibited in the form @ -|- #;, where again u\\s= g 4 u denotes
an element of the group U/, Since cach clc,mcni\of the set 'K, can be
represented i the form ¢ L w, and since f@r\d’lﬁereht clements » ; ant
1ty of the group U the elcmentq & — u, #udg + u, of the set A, ave
different, we therefore obtain o on{,;w one correspondence between U
and any 'K,, if we make correspond\to ‘cach element # of the gronp T
the clement ¢ + u of the ‘*s’(’i’@fdblam’b‘ ary.org.in

Finally we remark that amcmg Call the sets 'K, anly one sel 15 @ sub-
group of G, namely U. Q

ITndeed if 'K, iz a g gf‘oup, then the nuil clement of the growp &
must belong to 'K, ‘I\follows that 1t iz a common element, of the sets
'K, and U, and hesiee’ 'K, coincides with U,

A K

2. The case ofzafinite group G

Beeansd }ﬂ the one-to-one correspondence existing hetween K,
and theskﬂroup U, in a finite group & all the 'K, have an equal
]1111:1’11261‘ of clements, say m, where m is the order of the group U. Jf
the\nimber of different sets is equal to 4, and # 18 the order of the
geonp &, then we obviously have n = mj.

From this there follows in particular a result which was mentioned
earlier (Chapter TI, § 2} namely

Lagrange's Theovem.—The order of each subgrowp of o finite group &
5 @ divisor of the order of the group 6.

The number 4, that is to say the number of left cosets™ of the

* This number can also be foite in the caso of an infinite group @. Thus {or exarmple,

when the group ¢ is the gronp of all whole numbers, and 7 is that subgroup of &
which consists of all pumbers that are exactly divisible by the whole number 4 = 2.
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group 7 with respect to the subgroup U, is called the index of a subgroup
o ihe group o

3. Right cosets
We now ecall two elements ¢ and b equivalent (righé-sided equivalence)
relarive to the subgroup U, when their right difference

b— g = b} (—a)

is an element of the subgroup U. We easily verify that this equivalenges

18 gyinmetrie, transitive, and reflexive, A\ ¢
Indeed 1t follows from ) \' N
b—a=wu M
N
where » 1s an element of the group U, that D ’

a—b=—(h—0a)=—u

and it follows from x\\
b—a=ﬂ1 G_b'%ﬁé

where 4, and w, belong to U, that | WV
€ - == (C _ b) __L_r:('b."_ a.} = Uy —]— Hg

. www.dbratthbrary org.in
Fiually e qf—;a:éf €

P4\

and 0 belongs to U, A _
The right-equivalengé defines a partition of the group (7 into right
cosets, where the -rz'g}s\coset K. of the given element a consisls of all
dements x, for whidh b — @ == u 1s an clement of the group U, and thus
of alt elements ofthe form
\’\" r=u-+a
where » er’lb’ﬁgs to U,
IT @Delongs to I, then the set K, coincides with T,
,,,\:H{:'We let each clement u of the subgroup U correspond to the ele-
10n0 u - g of the coset K, then we obfain a one-fo-one correspondcnce
bétween {7 and the set K. In the case of a finite subgroup U, all co-
sets K| of this subgroup are finite and consist of tl_le same number of
elements ag 7 itself. Tf the group G is finite of order », and the sub-
group U has order , we have as before

7 = W

where § is the nuraber of different right cosets of the subgroup U, which
is therefore equal to the number of different left cosets.
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Thus the index of o subgrowp U relative to @ group G can be defined
eqieatly well as the number of left cosets vor as the number of right cusels
of the group G with respect to the subgrowp U. It iz equal to the ovder of
& divided by the order of U.

4. The coincidence of the left and right cosets in the case of an invariant

subgroup
The question now arises under what circumstances can we lhave
¢ i s N\
K, =K,
for each element @ of the group . O

Obvicusly for this it is necessary and suflicient that each elfytent. of

the form ¢ 4 » is equal to a certam element v’ 4 g, m)d. com&r%en
that each element » + @ is equal to a certuin element 2 M2 (here
#’ always denote elements of the subgroup U). Bpt]x Conditions are
equivalent; for the first condition states that forded¢H o of & and cach
v of & we can find & « of U7 in such a way thd‘\lss we have

o - U= U g \
whence O\
a - - (7113_2 '
This implies N _
e ls@irpmprs

Since any one element of bhe group & can he represented in the form
—a for a suitable chojce{of the element @ the first condition simply
means that the tmnsf&%‘l of the subgroup U with rerpect to any ele-
ment of the group, G cbincides with U, or U w5 an invariant subgroup of
the group @. N&

The secm{(fl\mndlhon reads: For each o of & and each w of U we
can find rom U in such a way that

fb\\ v tha

T A R S T
and, bherefore
\h‘:" — - U a
This implies
a4 Uea=TU

Consequently the second condition likewise requires that U shall
be an invariant subgroup of the group G
Thus we have proved this theorem:

Theorem.— Let U be a subgroup of the group Q. For every element o
of the group G the left coset of this element with respect (o the subgroup U
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cotncides with the vight coset of the seme element if and only of U 1w an
nvariat subgroup of the group G.

BSiuce for an invariant subgroup U we have for each element a of the
group &

’er = K;

thus in place of 'K, and K, we can simply write K, = 'K, — K|
and call this set simply the coset of the element @ with respect to !}Q
wvariont subgroup U,

In particular the right cosets coincide with the left when{ Oz a
gabgroup of 2 commutative group @, because all subgmnps of a
commutative group are normal divisors (Chapter VI, § 2, "’a‘echon 23,

5. Examples R4

T. Let G be the group of all whole numbergnd’ 7 € @ the group
ol alt of the numbers that are without remam pwhen divided by m.

If ¢ is any whole number, then K, conéiéts of all numbers of the
form « -|- mg with integral q. These &Ie the numbers which on
division by m yield the same remamder a8 does the number a. There-
fore the number of distinet cosets is equ&l to the number of different
remainders that oceur wfter, @ﬂh&‘mlhyy& ghit this number iz eqnal
to 1, because the numbers 0, }32, ..., m — 1, and only these, occur
as remainders on division 3; . Thus we have the following cosets:

(N The set of all nnpibars that on division by m yield the remdmd(,r
0. This eoincides Wlfh\t;\hc group U7 and consists of the numbers

, —g{n-,. g —ym, ...,
28m, —2m, —m, 0, m, 2m, 3m, ..., gm, ...

:n\.;' )
{1} 'I\‘«]%sf’;’et of all numbers that on division by m yield the remainder
1. Tl}f:ée, are
\\ —gm+1, —(g—1m -1 ..., -3m+41, —2m+ 1,

N\ —mL+ 1L, 1, mId1 2m+1, 3m41,...,gm+ 1, ...

(2) The set of all numbers that on division by s yield the remainder
3. These are the numbers
, —gm -2, —(g—1im -+ 8, ..., —3m+2 —2mJ 2,
—m 4+ 2,2, m+2, ..., mm+ 2, ...

..........................................
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(m — 1) The set of all numbers that on division by m yleld the
remainder (m — 1). This set consists of the numbers
—gm - m—1), —(g—Lm—(m—1),...,
—3m -+ (m— 1), —Zm — (m— 1), —m + (m — 1}
fm— 1, m-Hm—1, 2m4+(m—1),..., gm +(m—1), ...

or, what is the same thing, the numbers
, —2m—1, —m —1, =, m—1, 2m —1, 3m —1, O
I1. Let & be the group S, of all permutations on three eletne.ptc; md
U the subgroup of order 2 {(and consequently of index 3}, t}mﬁ"eon-,ms

of the following permutations: S

123 12.9%
P"=(123> and P2:(21 3)

\J
. . e . s
The division of the group ¢ info left and ¥ight coscfs is evident
from the following table: PN
S N Rig .
o a{,bl%ytof%%f
U—(.wpz} U= (P, Py)
A, . M . _
.\’ ‘1"“P3) (P Py)
O P By (Fa Ps)
N T T T
. :"\ W . )
III. %e“alternatmﬂ permutation group A, on n elcments ib itself
an invgglent subgroup of index 2 of the symmetric group S, The two

cose’bsg that belong to this subgroup are the group 4, itself and the set
xkf 21 odd permutations.

IV. In the group of rotations of an n-pointed double pyramid the
congruences of the first kind form an invariant subgroup of index 2.
One of the two cosets of this subgroup is itself and the other consists
of all congruences of the second kind.

Y. Thegrounp IJ of all translations of a line along itself is aninvariant
subgroup of index 2 in the group & of all congruences of the Line.
The two cosets defined by this subgroup are the group U itself and
the set of all congriences of the second kind,
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Vi Let G be the group of all complex numbers with the nsual
addition as the gronp operation. Let U be the subgroup of all real
numbers. The cosets into which the commutative group @ is partitioned
relative to the subgroup U are the sets K, each of which consists of all
cornplex numbers of the form

s Y]

where # and 8 are teal numbers, § is given and = runs through the set
of all zeal numbers. If we leb the complex numbers correspond’ 0
points of the plane in the nsual way, then each set appears as a\lme
paralial to the real axis (that is to say to the z-axis). N\

Ny

el
£

§2. The difference module correspondlr(gxfo a
given invariant subgroup -}

1. Definition PN

Tet I7 be an invariant subgroup of a cBifdin given group . Wo
consider the set of all cosets into which #hegroup @ is divided relative
to the subgroup U, We denote thisget by ¥ and prove that we can
define in it a law of addition so thé,’b V becomes a group onto which
the group  can be ma‘fﬁéﬂqﬁiﬂéﬁ%fph@mv“

Lc,t »; and v, be two arhitraty clements of the set ¥, Then », and
vy define two cosets of thelgroup @ with respect to the invariant sub-
group 7. We choogea 'tfer’bam element in each of these cosefs, say an
clement z, in the sef, 'b\zmd an element x, in the set v,, We shall denote
by v, the coset con’cauung the element @, + «, of the group (.

“ e prove thag the set v, does not depend on the particular elements
% and w, chy{q\l from the sets v, and v,. In other words, we prove that
if ] is afy element of the set v, whwh is in general different from z;,
and i @wy clement of the sct v, which is in gen(,ral different from w,,
then{r he clement o) + ) les in the same coset vy as does the element

1 “I‘ L.
\ In fact two elements @ and & belong to the same coset of the
invariant subgroup ¥ if and only if their difference belongs to {7,
We consider the difference

(72 — @ F o) =m o —n—
=& 4 (% — ) —

*We are speaking here of the representation of the complex number x 4 #% by
the point in the plane with coordinates x and y.
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Since #, and z; belong to one and the same coset », we have
Ty — Ty = Uy
where u, 18 2 cerfain element of U; this gives
(@ + @) — () — ;) = 2 — Uy — ] (1)
But U is an invariant subgroup, and hence
@ Lo, =u' -y

where 4 is an appropriate element of the gronp U, \
If we substitute this in formula (1) then we obtain

. !
(@ 4 ag) — (o) T2 = Loay - A\
S %

= ."~ ’ r
Now , and z; belong to the same coset », and hc%&,xl — &y = iy,
where u, is a certain element of the group U, Ceh§éruently we have

(my + wp) — {a; + w3} = w o

. . LS
Le. () + %) — (&) + ) is an clement ag==a’ 1+ u, of the group T,
which ig what was to be proved. O
Because the set », so obtained issdefined as soon as », and v, are
defined we may write N
www . dbratfibrary .org.in 5
gpuatiibraty org 2)

This is to he unde-rstooc{‘as the definition of the sum v, + &, ol two
cosets vy and vy, e

Thus B\

The sum of tiwh_posels v, and v, means that coset Uy which 15 con-
structed accordipg e the following rule:

In each §€§}9{ ‘and vy we choose an arbitrary element, we add these two
eEe-me-n-z‘-s'm\:eac}i- other, and we find the coset to whick their sum belongs.
This s set v,.

Arom this definition and from the fact that the addition of the
%‘emént-s of the group & satisfies the associative law, it follows im-
ediately that the addition of cosets satisfies the associative law.

We prove that the set U, with respect to the law of addition just
defined, plays the role of the null element, so that therefore we have
for cach cosel v the equation

v+ U=0-Fov—=u (33

To this end we select an arbitrary element x from the set » and take
the null element 0 from the set T. Then, from the definition of addition,
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it follows that the set v+ U is the coset containing the element
z —0 =  thatis to say it is the set v, Likewise the set, U - = is the
coset conlaining 0 4 2 =z, and is therefore the same set 9. This
proves formula (3),

FFinadly we prove that there exists a cosct inverse to cach co-set &,
which we denote by -—K, and which satisfies the condition

K+ (—K)=(—K)+E=U

For ihix purpose we choose some element ¢ in the set K and defta, >
the sef —A as that coset containing the element —a. From*the
definition of the addition of cogets it follows that cach of thé\sims
K- { Ryand({ .-K)-+- K represents the coset to which th.e lement
& |- (—uj = {—a) -|- @ = 0 belongs, and this is the set If,

Thus nur definition of addition satisfies all the{gsoup axioms.
Consequently 1ith respect to owr definidion of addisdnthe aggregale of
cosels of the group relative lo one of its invariant subroups U is a certain
group V. The sel U ds moreover the null elem ri&}f the group V.

The group ¥ is called the difference wddule of the group G relutive
fo ifs ivorivnt subgrowp U (it is denoted byd — U).*

2. The komomorphism thcorem t N ) _

Ag hefure let a grou‘ﬁ”ﬁwé%]a;aolﬂébg?‘%o{ vikiant subgroups U be
given. With each clement xof the group G we associate a certain cle-
went of the difference modalé V, namely the coset that contains the
element . From the mapping ¢ of the group & onto the group ¥ t}:ufs
constructed and fronﬁhe definition of addition in the group ¥ it
follows immediat-el}': that this mapping is homomorphie.

Which ele 1:(’:11]‘.}8 of the group & will be mapped on the .nu]_l
element of thelgronp V7?7 Since the nnll element is U, the obvions
angwer ot question is that all elements of the invarant subgroup
U, andy b:n] y those, are mapped by @ on the null element of the group

N\

CYrom the investigations of this and the preceding section it follows
that each invariant gubgroup U of the group @ is the kernel of a
certain homemorphic mapping of the group &, namely the homomorphic
napping of the group 7 onto its difference module with respect to U.

Lot us now consider an arbitrary homomorphic mapping f of a
group 4 onto a group B. Let I be the kernel of this homomorphic

* When the group opevation is represonied multiplicatively, then we call ¥V a
Jactor group and denete it by /07,

T Bee appendix, § 5, saction 2.
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mapping. We know that U is an invariant subgroup of the group A.
We denote by V the difference module of the group 4 relative to IV,

Let & be some element of the group B. Then there exists at least,
one element o of the group 4 which is mapped by f on the element b:

b=fla)

We will determine the inverse image of the element b in the mapping
£, L.e. the set of all elements x of the group A that are mapped hy f

on 5. We usually denote this inverse image by f~1(b}. N\
Thug f-1(b) is by definition the set of all elements = of the grapp* 4
satisfying the equation R\
'\
fley =5 « \

As already stated, let @ be an arbitrary slement }ﬂﬁ@h is mapned
on b, If z is another element of the set f~1(b) thenswe have

fley=5b flz)="h f(—a,)\; N
P N\
flz+{(—all=b+ (-H&0

{the zero on the right Is the null eIe;n’elrttf of the group B}, and this

means that z + (—a) is a cerboin Sehent « of the group U; thus

@ = - u is an element of d]?]h%t “?Esigb of the invariant subgroup &
]

. A ALy .org.n
to which ¢ belongs. Collverselyabe an % T’ one coset then we have

RS rT=a4 u
f(w)\:sf{a) + flu) = fla) + 0 = f(e)

Le. @ and z are mdpped on the same element b of the group B, or in
other words theylare contained in the same inverse image f~1(2).

Thus t?;g.fmm’rse wmages f~1b) of the elements of the group B are the
cosets of {@}roup 4 relative to the nvariant subgrowp U.

Tn €hig way there is set up a one-to-one correspondence 1 hetween
thegroup B and the group V.
~\f To each element of the group V, which i a certain coset of the

roup 4 relative to the invariant subgroup U, and therefore the inverse

image of 2 certain element & of the group B, there corresponds precisely
this element & of the group B. And each element # of the group B is
assoclated with exactly one coset, i.e. with exactly one element of the
group V, namely that coset which ig the inverse image of 5. The
mapping ¢ i3 homomorphie. Indeed let 4, and v, be two clements of
the group ¥ and let

Uy Yy == g (1)
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Let 2, be an arhitrary element of the coset v, @, an arbitrary element
of the coset wy, and ay = g - g,

We know then that a, belongs to 4,

We write

Flm) =t fla) =8, fla)=b,
Since f iz a Lomomorphism, we have
By + By = b, 2)

But #ince v, v, v, are the corresponding inverse images of ‘thie
elements by, b,, by we have 'S\
N

plog =b  plvg) =h yln)=1h )
so that the equation (2) may be written in the followfn% form:
w(vg) + p{vy) = plvy) x.\\.‘

Thus we have proved that the mapping w isfemomorphic. On account
of the one-te-one nature of the homomorphi® mapping of the group V
onto the group B this mapping is an isekorphism of V onto B.

The final result of all thege d%l}r?hrt' ations is the following theorem:

The Homomorphism b e0; em{}?—. L-L%Wfﬁnr-?ﬁb-lﬁz]orpkic mapping of a
group A onfo another group B s as kernel a certain invariant subgfowp
of the grong A. Conversely epery invariant subgroup U of the group A s the
kernel of o esrtain Iwm{%u-i}rpkic mapping ¢ of the growp A onto F}ze
Eifferesce module V afihe group A relative to U, We obtain ﬁ.:z’: MAPPLRY
P if we associnte with'ecery element of the group A its coset 'szuk respect
{0 the {nvariant, "%xfrgi'oup U. If f is an arbitrary homomorphic mapping
of the group dedto the group B, then the inverse images of the eﬂe.me-nts of
the group gﬁui this mapping are the cosets of the group 4 relat?,v:'-e to the
hernl Uy the mapping f, and the growp B is isomorphic to the difference
modl&ffff\'ﬁf the group A relative to U, o _

horefore the invariant subgroups of a given group c.om(.nde with

the kernels of all the possible homomorphic mappings of this group.
All the gTonps which are homomorphic to 4 coincide with those groups
which are isomorphie to the difference modules of the group A relative
to all possible invariant subgroups of A4.*

* Tt is left to the reader to roconsider, ip the light of the homomorphism theore{n
which we hyva inst proved, the examples of invariant subglroups and homomaorphic
Mappings whiclh were treated earlisr, and to determine the differenes modules corres-
Pending to ther,
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Corollaryy.—A homomorphic mapping of a group A onto a group B
is an isomorphism if and only if the kernel of this mapping consists
only of the null element of 4.

EXERCISES 0N CHAPTER VIII

.12 123 /123
1. Verify that the permutations (l 2 3) ( 23 1) (3 12 form an invari-

ant subgroup H of 85 Find the cosets of H and set up an addition table fof{h b
difference module S, — H. Duoscribe the homomorphic mapping of 8, ontio é@.— i
with kernel £,

2. Gy, denotes the eyclic group of order 12 gonerated by a, and ¥ m}he sih-
group generatod by 3¢. Fiod the cosets of 7T in (1, set up an a.dgiitwn taehle for
the difierence module &4, — H, and doscribe the homomorph.lvc mappmc' of (1,
onto &, — H with kernol &, A\

3. Find the elements of the difference module & N ¥nd write down ifs
addition table, whore & ia the group of all whole numbersdwith ordinary addition
as the group operation and H is the subgroup of all’é¥en numbers.

4, Prove that the factor groap G/, where € rs ko group of all non-zere com-
plex numbers with ordinary multlphcatlou a8\ the group operation and A is the
subgroup of all pogitive real numbers, is 1s®m,0rp}m, to tho group « {see p. 46}

5. If ! is the group of all co plex Jmbers with ordinary addition a3 the
group operation and i IF i§GH&"S T ofa o 3f(rea,f%]:lurnbeJ:'fs prove that & — H
iz isomorphic to H.

fi. Prove that the dﬁerel),gl\modulu Dy — ¢, where D, denotes the dihodral
group of order 8 and € its gdutre, is isomorphie to Klein's four-group.

7. Prove that a group of prime order iz nocessarily cvelie,

. » - . - ) -
5. Provoe that aﬁul:}group of index 2 is necessarily invariant.
N "4



Appendix

ELEMENTARY CONCEPTS FROM THE A
THEORY OF SETS R\

'\
The most important concepts of set theory, which Wefdfébtlss in
this appendix and which are being applied eontinually inatathematics,
are 1 the fivst instance the concept of a sef, of & mapping, and of a
paridfion, as well ag the clementary set-operations’ of forming the
union and the intersection of several (someiai;@s. of infinitely many)
sets. Q)

Q"

ST The fonehnt.of a set

The concepts of a set and of & ma:pp'mg belong to those mathematical
toncepts which cannot be deseribed in terms of simpler concepts, apd
hence cannot logically bédefitied. Therefore we speak ouly of explaining
the mca,ning of these a0n CBPt-S,

In everyday LifdAs"well as in every scientific study we are con-
tinually making 4@3’0{ tle concept of a set, ar, as it is often ca]‘led, of
a1 agoregate. Ve can speak of a sot or aggregate of ohjects which are
in a given peduy at a given time, of the set or aggregate of people who
Ao P-feseh}; i the lecture-room or concert hall, of the set or aggregat-e
of trees'gluwing in a certain garden, of the set of books belonging to a
g"l@ Jbrary, of the set of stars in the Milky Way, andT s0 on, Further,
We can speak ol the set of molecules which are contained in a volume
of given material, or of the set of cells in a living organism.

When we speak of a flock of gecse, a sack of potatoes, a jba,sket of
apples, then from the mathematical point of view these_ are just seta:
of gecse forming the given flock, of potatoes or apples in the sack or
basket, - .

The examples which we have given are examples of finite sets;
that is to say, each of them Is a set consisting of a certain finile number

a7
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of elements, which may be a very large number (as for example in the
casc of water-molecules contained in a given volume of water), hut
which is always finite.

But infimite sets also occur. Such are for example the sot of all
natural numbers {i.e, positive integers), the set of all lines (in « plane
or in space) which pass through a given point; the set of all ciroles
through two given points, the set of all planes through a given line, and
80 on. )

Set theory is principally concerned with the investigation of o
finite sets. O\

The theory of finite scts is sometimes also called commnut.mal
analysis, 3

The simplest properties of sets, which we shall be Qpea‘kn“ ¢ ahout
here, almost always apply equally well to both finitelat®d infinite sets.
We note next that in mathematics it is quitc\pustifiable to con-
sider sets containing just one element, ag well agithe set containing no
element at all (the so-called *“ empty ™ set)e ">
Let us suppose in the first instancebbat’ we are considering a seb
of circles passing through certain given pomtq Tt the number of these
points is two, then the sct of circlus’j{}&sﬁncr through them 15 infinite.
However, if the number . chlb%ﬁﬁﬂ%apprg?‘gq jen, provided the three
points do not lie on & straightdine, there s only one cirele passing
through them. In other,&ords, the set of circles passing through
three points consists of kﬂ@one element. But the set of cireles thren rfh
three collinear pointseontains no element. It is the empty set since
no such circle existyy
We explain, €his idea further by an cveryday example. Suppose
that we aresgpeaking of the set of schoolboys who are present at a
certain leggon‘and who are hetween 17 and 19 vears of age. This set 18
complgtely determined in the sense that we can find out from each of
the Sehoolboys present at this lesson, by making a simple inquiry,
A féther he belongs to this sct or not. But ev1d9ntly we do not know
biforehand how many schoolboys do belong to the set. It may be fen,
it may be five, it may be one, and it may be that there ate no school-
boys of this age group in our class—if, say, they are all younger than
17, Tn this case our sct is empty; in other cases it contains ten or five
elements or one element.
Sets consisting of a single element will often appear in this book.
Here it is not necessary for us to consider further the emnpty set; but
it is oflen necessary and expedient to make usc of it in mathematics.
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§2. Subsets

We consider the set 4 of all people who are present in a certain
tecture-rooni.  Then the set of women present and the set of men
present in the lecture-room provide examples of subsets of the set A,

Exarmples of other subsets of the set 4 are: the subset of those
people who are not yet 20 years old; the subset of those people who
are not yet 30 years old; the subset consisting of all those people whose &
heights ure between 5 ft. and 6 ft.; the subset of all those people taler
than 5 {%. 9 in.; the subset of all those people who live in Londoni\ilie
subsct of all those people belonging to a certain professionyorto a
particular social class. RO

It is evident without more ado that certain of thege Glibsets can
consist of u single element; other subsets may happéoito contain no
element at all. But it can also happen that any qie'ef the given sub-
seta coincides with the whole set A, as for cxafaple, if all the people
present in the lecture-roam are women or if. th’é}\are all not vet 30 years
old. Morcover it can happen that certain of fese subsets coincide with
eachi othey (if, for example, all the peopl@in‘the lecture-room are women
and all are younger than Q%xg%rgr.gm)él.ary_m. a.in

The following is the general ddfimition of a subset:

A set B is called a subset of &'set 4 if every element of B is af the same
teme an element of A. i i'",\

A subset of the sep As Called smproper if it coincides with the set
A (in other words: tle set 4 is regarded as one of its own subsets,
which is called imp{épér}. If B is a subsct of 4, then we also say that
B is coniained ;iw; A, or that 4 confeins B, and we write: B& A' or
A2 B, The @yl C is called the fnclusion sign. The empty set is a
subset of gPedy set (also called improper).

Wo giwe’ further examples.

JTHedset of all even numbers iz a subset of the set of all whole
niwbers. The set of all whole numbers is a subset of the set of all
rational mianbers,

§ 3. Set operations

L. The wnion of sets i
We now tarn back to the example which we considercd at the begin-
ning of the previous paragraph. i
From amo ng all the people who are present in a given lecture-room,
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we consider the set M of all those people who satisfy af least one of (he
Sollowing conditions:

1. They are younger than 20 years old.

2. They are taller than 5 ft. @ in.

In other words: to our set M belong all those peopls who are
younger than 20 years old {regardicss of their heights) and also ail Hhose
people who are taller than b ft. 9 in. (whatever their ages). The ser M
is called the wnion of the following two sets: The st M, of all people
present who are younger than 20 years old, and the set M, of &N
people present who are ta]l(,r than 5 f£. 9 in.

The general definition of the union of two sets 4 and B ]"’{_‘chl‘*
The set consisting of all elements of the set 4 and of afl eéem(?m\ Qf tus el
B s called the union of the sets 4 and B. N

temark.—From the example given above we rec%mfe thab we can
still form the nnion of sets when they have elementsdti¢ommeon. Natur-
ally it can happen that the sets M, and M, haveelements in comion,
that is, that in our lecture-room there are/petple present who are
younger than 20 and at the same time tall(atisfhall 5 [t @ in.,

In particular we remark that: If éh€set’ B ¢s @ subset of A, then the
unton of the sets B and A coinoides wiblothe set A. For example, il the
set A consists of all people reset in the lecture-room and not yeb
30 years old and the set/B¥d ﬁﬁgiﬂ’&ﬂb‘i}%&‘ﬂrewnt who ate younger
than 20, then evidently the union of 4 and B coincides with A.

In a completely analugmm manner we define the union of three zets,
and of four sets, and gxlon! We can also define the wunion of mfinitely
many sets, All thisgs summarized in the following definition:

Suppose thereyls’ given an arbitrary finite or infinite class of sels.
The set of all Pﬁementa lying in at least one of the sets belonging lo this
cluss 1s cail@ e union of the given class of seis.

By way/of example let A, be the set of all regular Z-gons in the

planestwith & =3,4,5,...), then 4, is the set of all cquilateral
Lr;a,nnlcs, A, iz the set of all squares, and g on.

\“MFhe set of all regular polygons is the union of the sets 4, 4,, 45

N PR

We denote by By (k =3, 4,5,. ..) the sct of all regular polygons
whose number of sides does not exceed k. Then B, is the union of the
sets Bg, By, ..., Bry, By, and the set of all regular polygons is the
union of the sete B, £ =3, 4,5, . ..

Furthermore, evidently 4, = B, and

B, €B,CB;CS...C€B,E8B,,,C......

Remark.—The union of sets is also often called thejr sum.
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2. The intersection of sets

Let M, be the set of people present in a lecture-room who are
younger than 20 years old, and let M, be the set of people present in the
lecture-tonm and taller than 5 ft. 9 in.

We understand by the fnfersection of the sets M, and M, the set of
elements which belong to both of the sets M and M,, and therefore in
our exampie 1t consists of those people present who are younger than
20 and at the same time taller than 5 ft. 9 in. Naturally this set can ¢
be empty. A

In general by the intersection of the sets belonging to a given ( finite-ep
wfinate} elass of sets we mean the set consisting of those elements befof}gmg
to all the sets of the qiven elass, N

We remark that if B € 4 then the intersection of the sT\ét-s Aand B
is simply the set B. O

Remarl.—The intersection of sets is also often ga}led their product,

i

§ 4. Mappings or fqnc’ﬁ}ns

let us suppose that a certain nmb’e}ir of people are going into the
theatre. At the entrance to.fhe &bpgﬁipgq}ag}t(/ d pver their coats, ete.,
and receive in exchange a number*under which their belongings are
looked after in the cloakroomd

What, is it that interest® s mathematically in this very familiar
sifuation ? N\ -

What interests us(%the following fact:

To every membet/of the audience in the theatre there corresponds
{or 4s relaled) asgeetain ohject, namely the number which this person
has been givefiNY the cloakroom.

It we ,a&éiate, in any way whatever, with every element a of a
certain s&thA a particular element b of a certain set B, then we say that
the sefl D i mapped tnto the set B, or that there is given a function whose
argulent runs through the set 4 and whose values lie in the set B. In
order to signify that the given clement & is related to the elelgent a
We write b = f(a} and say that b is the image of the‘ element a in F;he
given mapping f, or that b is the value of the function corresponding
to the value q of the argument, .

We shall now investigate the different cases that can arise.

It can Lhappen that for a certain performance all the tickets are
sold. Then also there will usually be no empty place in the cloakroor.

Not only hag every member of the audience got a number but also all
8 i (240}
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the numbers are used up among the members of the andience. In
general matheiatical terms this case may be expressed in the following
form:

To every element @ of the get A is related an element b = f{a) of
the set B, and also every element of the set B s reluted to at least one
element of the set A, (The words in italics should make clear the applie-
ation to our example and in particular the fact that every mumber is
disposed of.)

In this case we call f a mapping of the set 4 onto the set B. O

Why do we stress that every element of the set B 1s associated with
at least one element of the sct 41 (D

Because it can happen that to different elements of the c?et, A there
is related one and the same element of the set B, Tndouy particular
example this means that several people have gmm zggxtfmr coels in be
kept under one and the swme mumber,

The most 1n1portant kind of mapping is the happiug of one set anto
anather, We ea%lly arrive at this situation if e start from the general
casc of a mapping of one set ¥nio anothery lhdmd let us suppose glven
an arbitrary mapping f of the set 4 info}he set B. The set of all the
elements of B each of which is assadidted by the mapping f with at
least one clement of the set é 186 hed the maa( @ set uf A n the mep Hang
f; we denote it by f( A‘g“ KT bu&cngltlf_r\a’g ‘ﬁhe mapping f 15 a mapping
of the set 4 onio the set (),

These remarks allowsls to restrict onrselves in future to the con-
sideration of mappifgh 6f one set onéo another,

In the examplézabout the visitors to the theatre, 4 iz the set of
people who attefided a certain performance, and f({4) is the set of all
wardrobe nymbbrs which are in use.

Defisvittapc—Suppose there is given a mapping [ of a sel A onlo a set
B, Le %bt an arbitrary element of the set B. The sel of all elements of 4
te: 1!‘1;@6& the given element b r‘om(’spond.s tn the mapping f is cafled the m—

e Se anage of the clement b in the mapping f. We denote this sel by f4

“In our example b is an arbitrary number in the cloakroom of the
theatre. The inverse image of an element b is the set of all visitors to
the theatre whose coats have been hung up under this number b.

We consider now the case that under each number is hung only one
eoat, so that therefore the inverse image £-1(h) of each element 5 con-
sists of only one element of the set 4. In this case the mapping of the
set A onto the set B is called one-to-one.

We give another example illustrating the concept of a one-to-one
mapping.
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We lmragine & detachinent of cavalry. A horse belongs to every
rider, and a rider sits on every horse. Thervefore there exists a one-to-
one mapping of the set of all riders onto the set of all horses {of a given
detaclinent) and also a one-to-one mapping of the set of all horses
onto the set of all riders (we speak always of the riders and horses of a
given detachment).

This example shows that a one-to-one mapping of a set 4 onto a set
B automatically gives vise to a one-to-one mapping of the set B onto
the set A: If every set f-1(b), where b s an arbitrary element of B\
consists of only one clement @, then we obtain the mapping f1 of the
set 7 onto ihe set 4 if to every element b of the set B we rpl(it%’}he
elemont e = f=1b) of the set 4. We speak of = as the mappingsinverse
to f. N

Therefore a one-to-one mapping of a set 4 onto a set(B leads to the
following sitnation: We unite every element a of{thé set 4 with a
certain uulquely determined clement f{a) to fortha pair. Then it
appears that every element b of the set B w/paired off exactly once,
and Indecd with the element @ of the set ﬁ'ﬁﬂiéucly determined by A,
H to every clement b of the set B we reldts the element o of 4 which 15
paired off with it, then we obtain q,pﬁc-t&@ne mapping f~1 of the set
B onto the set 4, which is inyersedfe the mapping f.

Thervefore, in g 0113—{%\—\3;’15%%};1%? of 6h&ses onto another, neither
set is in a moro privileged pesition since exch of the two sets is mapped
onto the other in a ()ﬁc{’aq\one fashion. In order to emphasize this
equality of status of thé t%o sets we often speak of a one-io-one corre-
spondence between tbg sats and understand by this the two one-fo-one
nutually inverse(ippings of each set onte the other.

#

N\ _
\\ § 5. Partition of a sef into subsets
1., S\ct\s of sets (systems of sets)
/o A¥e' can consider sets which consist of various kinds of elements.
\Qltijﬁl'ti(‘.-ular we can consider sets of sets, that s, sets whose elements
are themselves gets. We have already come across them when we
introduced the definition of the union and intersection of sets. There
we were speaking of the union and the interscetion of classe?s or sets
(containing a finite or infinite number of sets), and therefore mdced. of
sets of sets, We add to the examples given there some more, which
are drawn from everyday experience.
The sot of all spors clubs in London provides an example of a set
of sets (each sports club being composed of its mewmbers); the set of all
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scientific congresses in a given year or in a given country, the set of all
trade union organizations, the set of all military units (divisions,
regiments, batallions, companies, platoons, ete.) of a given army are
likewise sets of sets. These examples show that sets, which are elements
of a given set of sets, can somctimes intersect and sometimes have no
common elements. Thug, for example, the set of trades union organiz-
ations in a certain country would provide an example of a set of
mutunally disjoint sets, under the assumption that a citizen of the pat-
ticular country could not at the same time be a member of two diffen b
trade unions, On the other hand the set of all military units e any
army 1z an example of a set of sets of which several th’ILQH b‘3 are
subsets of the other elements: every platoon is a subset ¢f e certain
company, a company is a subset of a division, and so onf N

The set of sports clubs in a certein town in gebéral consists of
intersecting sets, since one and the same persbi\gan be active m
several clubs (for example in a swimming clubgnd m a football team
or 1n & sgkiing club). D

Remark —For ease of expression, mstcad\of SPCd.Ll]l“‘ of o “ et of
sets ’ we Mmay sometimes use such a phrase a8 “* system of sets ” or

“ set-aggregate ,, N

_db—airl“l’s. S
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We obtain a very 1mp0.nﬁant class of set-aggregates if we consider
all possible divisions of qn}trbatmry set wnto mutually disjornt selis, Jn
other words, we suppt jo.that a set M is given which is exhibited as a
union of mutually digjoint subsets (of which there may be a finite or
ivfinite mumber){/These subsets are terms of the union and also ele-
ments of the'givén division of M.

Era \T —Let M be the set of all pupils of any particular school.
The 5(.}3{}8 is divided into ¢lasses which cvidently form mutually dis-
}omt Fubsets whose union is the whole set, M.

N\ Emmple II.—Let M be the set of all pupils who attend scecondary
\chaols in London, The set M ecan be split up for example in the fol-
lowing two ways into mutually disjoint subscts:

1. We regard the pupils of one and the same school as forming one
term of the union * (that is we divide up the set of pupils according
to schoolg).

2. We regard the pupils of one and the same year (in different
schools) as forming one term of the union,

* Under the assumption that cach pupil attends only one school.
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Ezample I11.—Let M be the set of all points of the plane, We
choose an arbitrary straight line ¢ in this plane and divide up the whole
plane into lines parallel to g.

Remank I.-—Those readers who know what a coordinate system is
may suppose the linc ¢ to be one of the coordinate axes of this coordin-
ate system (for definiteness we may say the z-axis).

HKemark I1.—If a given set M s divided into mutually disjoint sub-
sets whose wnton ws M itself, then we simply speak of @ partition of the'sét
M (or sometimes of o partition info classes). , \‘\

Theorem I.—Suppose a mapping f of & set A onto a set Bas geven,
The inverse dmages f~4b) of all possible points b of the @th?form «
partition of the set A. The set consisting of the classes f‘l@ %8 in one-to-
one correspordence with the set B. v

The truth of this theorem is immediately evident® To each cloment
@ of a set /! there corresponds by the mapfia¥ f just one element
b= f{u) of the set B, so that o belongs g0, the nverse image /(3.
But this means firstly that the union(of" the inverse images of the
potnts & s the whole set 4 and sccond,]y that they are mutua,lly dis-
joint, be )

The sct of classes f—l b %Jlﬁlg;{); %go?llégc{mespondence with the
set B, since to cach elemeni®of B corresponds the class f~1(2), and to
cach class F-1(%) correspolrd}\the element b of B.

Theoverm TT.—Sw p\sso @ ;nartmon of a set 4 into classes is giwen. This
partition gives riseddod mapping of the set A onto a certain sel B, fnamefy
o¥in the set of alf® whtisses of the given purtition. We oblean this mapping
by associatin \af}a cach element of the set A the class to which 1t belongs.

The pl\og of this theorem is already contamed in its statement.

of the London school-
‘“hﬂﬁﬁn {111 meple I, 1) the mapping of the set 4 of all pupils
“K}t" the set B of all schoolq has already been indicated, Correspondmg
to cach pupil is the school to which he belongs.

In spite of the self-evidence of the results stated in our two theorems,
they did not at once find a place in mathematics in appropriate mathe-
wmatical tcrmHlOlOg But as soon as this was found it assumed very
great importance in the Jogical foundations of different mathematical
disciplines, particularly in algebra.
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3. Eqaivalence relations

Suppose there is given a partition of a set M. We introduce the
following definition: We call two elements of the set M equivalent
with respeet to the given partition of M if they belong to one and the
sare class.

If we divide up the London schoolchildren aceording to schools then
two puplls are “ equivalent ” if thev attend the same school {although
they may beleng to different yvears). If we divide them up according
to years then two pupils are * equivalent ™ il they belong to oue :1115“
the same vear {though they may attend different schools). , \‘\

Our equivalence relation defined above possesses the f& lowing
properties: \

It is symmetrical: If ¢ and b are equivalent, then S'E) art b and o,

It is transitive: If the elements ¢ and b are qum?aTent ax well as
the elements b and ¢, then also e and ¢ are equivalet. (I'wo clenents
a and ¢, which are equivalent to a third elemel\t\b are also equivalent
to each other.)

Finally we conclude that every eleme.u‘t is equivalent to itsclf;
this is the reflexive property of the cquwalpnoe relation,

Hence every partition of o given sbt defines, among the elements of this
set, an equivalence relatzmtﬂ’wfﬁéfa%"ﬁh‘i@m@Tgtmnetrm? and transiive.

We now assume there to be 4 criterion, whose nature need not he
specified, which allows uf Mo speak of certain pairs of elemecnts
of the set M as e @Qie.nt pairs. All that we assume aboub this
equivalence is that 1t possesses the reflexive, symmetrical, and
transitive properiess
We prove ihatthis equivalence relation defines a partition of the
set M. ’Q\

We denete by K, the class of a given element a of the get M and
understantd by this thc set of all elements which are equivalent lo a.

Aince our equivalence relation is by hypothesis reflexive, every

\éFe:annt @ is contained in its own class.

We prove that: If twe dlasses infersect (that is, have at least one
element in common) then they coincide with each other (that is, cvery
element of the one class iz at the same time an element of the
other).

Let the classes K, and K, have the element ¢ in common, Denoting
the equivalence of any two elements #, y by # ~ ¥ we have, according
to the definition of the classes,

&~ b~
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whence on account of the syrametry ¢ ~ b and on account of the
transitivisy

a~b (1)
Let i be an arbitrary element of the class X,. Then
b~y
On wecovnt of the transitivity, and using (1), we have

@~y

N ¢
80 that 7 Is an element of the class K,. )

Now let . be an arbitrary element of the class K,. Then ()

a ~ 3T

and on account of the symmetry
& o~ il N
D
thercfore by the transitivity, and using (1)3~~:\ v
g eb O

™
Al

Hence on account of the symmetry
wywiw. dbratihibrary.org.in
Ny

which means that o belong to the class K,
¢ \J

Therefore two clam?:@‘{a and K, which have an element ¢ in common
evidently coincide wabh each other.

We have prbyed that the different classes K, form a system of
mutually dis] {(hit’%l}bsets of the set M. Furthermors the union (?f these
classes Is Q@}s{:hole set M since every element of M belongs to its own
clarg. O\ . .

Walrepeat the results proved in this section and combine them in
the Sollowin g theorem:

Theorem I11.-—Every partition of a set M defines, among the elements
of the set M, o certain ggﬁ.g}g;@lgﬂ,ce relation which possesses the PTU}’@TIW‘?
of being reflerive, symmetrical, and transitive. Conversely, every Qmw’lh
ence relation existing between the elements of the set M, and POSSESSIY the
refleive, symmetrical, and transitive properties, defines a division of the
set M into mutually disjornt classes of equivalent elements.
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EXERACISES ON THE APPENDIX

1. Lot A, B, C, denote the interiors of three circles, esch of which interssuts
the other two, Indicate by shading the following: AUB, ANEB, Auv BuC,
ANBnd (AuBYNC, {ANB)u(; wherse AU B indicates the union of A
and B, and AN B indicates their intorseotion.

Verify that (A U B) 0 C == (AN C)u{Tn . A\

2, Determine the union and intersection (@) of all circles with cerﬂjk;e\' G;’Bl’ld
() of all circles passing through the two points P, Q. « \/

\
s
< 3

3. Determing the union and interseetion of s!l circles of un{ﬁ ﬁdius which iie
entirely ingide a given civele of diametor thres units, ¥

ANY;
4. A, denotes the st of all positive integral mult\i:pl}s of the whoele numbor k.
Detormine the union and intorsection of the s{:tfsf.' b oAgy vovy Ag
5. Prove that the union of all equﬂat(gr»;i Yriangles which can be inseribed in
the cirele centre O and radiug ong %Emﬁﬁgpytwﬂmh lying inside the eircle,
and that the intersection of those t.riadf;ffes is the sob of all points Iying inside tle

cirele centre O and rading I, 4

Btate also the solution of f;-k@ ;a\nalogous problem for inscribed squarey and velet
regular polygons, as woll :i\\}‘er”polygons oiroumscribing the circle,

6. ITna ccrt&ig‘é}tf 7 of the homes have a wireless, 3 have television and #
have a vacuumy/@lgdner. What is the least proportion of homes which must have
all three ? {r’lﬁt s the greatest proportion of homos that cen have all three?

"\
2 8

7..\1.;&{'. the relation ~ among the real numbers be defined as:
mJ

\’ (@) e~bifandonlyifja|=1|b

(B) a~bifand onlyif |« 22|51
e} a~bifandonlyif |& — 3| > 0.

(d) @ ~ b if and only if 1 + ab > Q.

Which of these {2 an equivalence rolation?
108
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